Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),...Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),pH and rotation speed(N)on the interception of Hg^2+were investigated.The interception could reach 99.7%at pH 7.0,P/M 6 and N less than 1890 r/min.The shear stability of PMA-Hg complex was studied by RDM.The critical rotation speed,at which the interception starts to decrease,was 1890 r/min,and the critical shear rate,the smallest shear rate at which PMA-Hg complex begins to dissociate,was 2.50×10^5s^-1 at pH 7.0.Furthermore,the critical radii were obtained at different rotation speeds and pHs.The results showed that the critical radius decreased with the rotation speed and increased with pH.Shear induced dissociation coupling with ultra?ltration(SID-UF)was efficiently used to recover Hg^2+and PMA.展开更多
In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elas...In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.展开更多
基金Project(21476265)supported by the National Natural Science Foundation of China。
文摘Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),pH and rotation speed(N)on the interception of Hg^2+were investigated.The interception could reach 99.7%at pH 7.0,P/M 6 and N less than 1890 r/min.The shear stability of PMA-Hg complex was studied by RDM.The critical rotation speed,at which the interception starts to decrease,was 1890 r/min,and the critical shear rate,the smallest shear rate at which PMA-Hg complex begins to dissociate,was 2.50×10^5s^-1 at pH 7.0.Furthermore,the critical radii were obtained at different rotation speeds and pHs.The results showed that the critical radius decreased with the rotation speed and increased with pH.Shear induced dissociation coupling with ultra?ltration(SID-UF)was efficiently used to recover Hg^2+and PMA.
文摘In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.