Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT...Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.展开更多
Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability o...Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.展开更多
This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantatio...This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.展开更多
Barium titanate(BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition(PAD) technique.The growth conditions including ambient and annealing temperatures were carefully ...Barium titanate(BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition(PAD) technique.The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion.Crystal structures,surface morphologies,and dielectric performance were examined and compared for BTO thin films annealed under different temperatures.Correlations between the fabrication conditions,microstructures,and dielectric properties were discussed.BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with εr~ 400 and tan δ 〈 0.025 at 100 kHz.The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.展开更多
ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, ph...ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.展开更多
We report the epitaxial growth of single-crystalline Cd Te(100) thin films on Ga As(100) substrates using molecular beam epitaxy. By controlling the substrate pre-heated temperature with adjustable Te flux, three ...We report the epitaxial growth of single-crystalline Cd Te(100) thin films on Ga As(100) substrates using molecular beam epitaxy. By controlling the substrate pre-heated temperature with adjustable Te flux, three different reconstructed surfaces are realized, and their influence on the subsequent Cd Te growth is investigated. More importantly, we find that both the presence of a thin native oxide layer and the formation of Ga-As-Te bonds at the interface enable the growth along the(100) orientation and help to reduce the threading dislocations and other defects. Our results provide new opportunities for compound semiconductor heterogeneous growth via interfacial engineering.展开更多
This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as see...This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.展开更多
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characteriz...The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.展开更多
As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the m...As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the mechanism of EC properties,and thus facilitate optimization of device performance,clarification of the correlation between cation storage and transfer properties and the coloration performance is needed.In this study,transparent polycrystalline and amorphous WO3 thin films were deposited on SnO2:F-coated glass substrates by the pulsed laser deposition technique.Investigation into optical transmittance in a wavelength range of 400-800 nm measured at a current density of 130 μA·cm-2 with the applied potential ranging from 3.2 to 2.2 V indicates that polycrystalline films have a larger optical modulation of ~ 30% at 600 nm and a larger coloration switch time of 95 s in the whole wavelength range compared with amorphous films(~ 24% and 50 s).Meanwhile,under the same conditions,polycrystalline films show a larger lithium storage capacity corresponding to a Li/W ratio of 0.5,a smaller lithium diffusion coefficient(2×10-12cm2·s-1 for Li/W=0.24) compared with the amorphous ones,which have a Li/W ratio of 0.29 and a coefficient of ~2.5×10-11cm2·s-1 as Li/W=0.24.These results demonstrate that the large optical modulation relates to the large lithium storage capacity,and the fast coloration transition is associated with fast lithium diffusion.展开更多
Copper indium diselenide (CuInSe2) thin films were prepared by ion beam sputtering Cu, In and Se targets continuously on BK7 glass substrates and the three-layer film was then annealed in the same vacuum chamber. X-...Copper indium diselenide (CuInSe2) thin films were prepared by ion beam sputtering Cu, In and Se targets continuously on BK7 glass substrates and the three-layer film was then annealed in the same vacuum chamber. X-ray diffraction shows that the CuInSe2 thin films have a single chalcopyrite structure with preferential (112) orientation. Scanning electron microscopy reveals that the CIS thin films consist of uniform and densely packed grain clusters. Energy dispersive x-ray spectroscopy demonstrates that the elemental composition of CIS films approaches the stochiometric composition ratios of 1:1:2. Raman measurement shows that the main peak is at about 174cm^-1 and this peak is identified as the A1 vibrational mode from chaicopyrite ordered CulnSe2. Optical transmission and absorption spectroscopy measurement reveal an energy band gap of about 1.05 eV and an absorption coefficient of 10^5 cm^-1. The film resistivity is about 0.01 Ωcm.展开更多
High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resisti...High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,展开更多
Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ ...Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.展开更多
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f...Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.展开更多
We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field ...We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field en- hancement effects. In addition, the oxide spacer layer between the metal (e.g., AI, Ag and Au) substrate and the perovskite film plays an important role. The simulations and experiments imply that the enhancement is related to surface plasmons of nano-structural metals.展开更多
Polycrystalline LaCrO3(LCO) thin films are deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition and used as the switching material to construct resistive random access memory devices. The unipolar resist...Polycrystalline LaCrO3(LCO) thin films are deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition and used as the switching material to construct resistive random access memory devices. The unipolar resistive switching(RS) behavior in the Au/LCO/Pt devices exhibits a high resistance ratio of ~104 between the high resistance state(HRS) and low resistance state(LRS) and exhibits excellent endurance/retention characteristics.The conduction mechanism of the HRS in the high voltage range is dominated by the Schottky emission, while the Ohmic conduction dictates the LRS and the low voltage range of HRS. The RS behavior in the Au/LCO/Pt devices can be understood by the formation and rupture of conducting filaments consisting of oxygen vacancies,which is validated by the temperature dependence of resistance and x-ray photoelectron spectroscopy results.Further analysis shows that the reset current IR and reset power PR in the reset processes exhibit a scaling law with the resistance in LRS(R0), which indicates that the Joule heating effect plays an essential role in the RS behavior of the Au/LCO/Pt devices.展开更多
SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical propert...SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300-400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal-insulator-semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole-Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 10^11Ω.cm under the voltage lower than 10V (corresponding to the electric field of 1.54×10^3kV.cm^-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal-ferroelectric-insulator-semiconductor (MFIS) structures.展开更多
The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films ar...The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.展开更多
Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Tr...Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.展开更多
VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant i...VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.展开更多
In this work,we have developed a new method for manipulating and transferring up to 5 mm×10 mm epitaxial oxide thin films.The method involves fixing a PET frame onto a PMMA attachment film,enabling transfer of ep...In this work,we have developed a new method for manipulating and transferring up to 5 mm×10 mm epitaxial oxide thin films.The method involves fixing a PET frame onto a PMMA attachment film,enabling transfer of epitaxial films lifted-off by wet chemical etching of a Sr3Al2O6 sacrificial layer.The crystallinity,surface morphology,continuity,and purity of the films are all preserved in the transfer process.We demonstrate the applicability of our method for three different film compositions and structures of thickness~100 nm.Furthermore,we show that by using epitaxial nanocomposite films,lift-off yield is improved by~50% compared to plain epitaxial films and we ascribe this effect to the higher fracture toughness of the composites.This work shows important steps towards large-scale perovskite thin-film-based electronic device applications.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1400300)the National Natural Science Foundation of China(Grant Nos.22271309,21805215,11934017,12261131499,and 11921004)+1 种基金the Beijing Natural Science Foundation(Grant No.Z200007)the Fund from the Chinese Academy of Sciences(Grant No.XDB33000000)。
文摘Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.
文摘Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.
文摘This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11028409 and 60976061)the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2009Z0001)
文摘Barium titanate(BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition(PAD) technique.The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion.Crystal structures,surface morphologies,and dielectric performance were examined and compared for BTO thin films annealed under different temperatures.Correlations between the fabrication conditions,microstructures,and dielectric properties were discussed.BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with εr~ 400 and tan δ 〈 0.025 at 100 kHz.The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.
基金Supported by the National Nature Science Foundation under Grant No 50871046, the National Basic Research Program of China under Grant No 2010CB631001, and the Program for Changjiang Scholars and Innovative Research Team in University.
文摘ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2017YFB0405704 and 2017YFA0305400the 1000-Young Talent Program of Chinathe Shanghai Sailing Program under Grant No 17YF1429200
文摘We report the epitaxial growth of single-crystalline Cd Te(100) thin films on Ga As(100) substrates using molecular beam epitaxy. By controlling the substrate pre-heated temperature with adjustable Te flux, three different reconstructed surfaces are realized, and their influence on the subsequent Cd Te growth is investigated. More importantly, we find that both the presence of a thin native oxide layer and the formation of Ga-As-Te bonds at the interface enable the growth along the(100) orientation and help to reduce the threading dislocations and other defects. Our results provide new opportunities for compound semiconductor heterogeneous growth via interfacial engineering.
基金Project supported by the "863" High Technology Research Program in China (Grant No 2001AA311120), the National Natural Science Foundation of China (Grant No 60278031), the Innovation Project of Chinese Academy of Sciences, the Jilin Province Science and Technology Development Program Project of China (Grant No 20040564) and the Young Innovation Function of the Changchun Institute of 0ptics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No Q03M23Z).
文摘This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60877029, 10904109, 60907021 and 60977035, the Natural Science Foundation of Tianjin under Grant Nos 09JCYBJC01400 and 07JCYBJC06400, and Tianjin Key Subject for Materials Physics and Chemistry.
文摘The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10979069)the "Hundred Talent Program" of Chinese Academy of Sciences
文摘As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the mechanism of EC properties,and thus facilitate optimization of device performance,clarification of the correlation between cation storage and transfer properties and the coloration performance is needed.In this study,transparent polycrystalline and amorphous WO3 thin films were deposited on SnO2:F-coated glass substrates by the pulsed laser deposition technique.Investigation into optical transmittance in a wavelength range of 400-800 nm measured at a current density of 130 μA·cm-2 with the applied potential ranging from 3.2 to 2.2 V indicates that polycrystalline films have a larger optical modulation of ~ 30% at 600 nm and a larger coloration switch time of 95 s in the whole wavelength range compared with amorphous films(~ 24% and 50 s).Meanwhile,under the same conditions,polycrystalline films show a larger lithium storage capacity corresponding to a Li/W ratio of 0.5,a smaller lithium diffusion coefficient(2×10-12cm2·s-1 for Li/W=0.24) compared with the amorphous ones,which have a Li/W ratio of 0.29 and a coefficient of ~2.5×10-11cm2·s-1 as Li/W=0.24.These results demonstrate that the large optical modulation relates to the large lithium storage capacity,and the fast coloration transition is associated with fast lithium diffusion.
基金Supported by the Natural Science Foundation of Guangdong Province under Grant No 7009409, and Program of Science and Technology of Shenzhen under Grant No 200729.
文摘Copper indium diselenide (CuInSe2) thin films were prepared by ion beam sputtering Cu, In and Se targets continuously on BK7 glass substrates and the three-layer film was then annealed in the same vacuum chamber. X-ray diffraction shows that the CuInSe2 thin films have a single chalcopyrite structure with preferential (112) orientation. Scanning electron microscopy reveals that the CIS thin films consist of uniform and densely packed grain clusters. Energy dispersive x-ray spectroscopy demonstrates that the elemental composition of CIS films approaches the stochiometric composition ratios of 1:1:2. Raman measurement shows that the main peak is at about 174cm^-1 and this peak is identified as the A1 vibrational mode from chaicopyrite ordered CulnSe2. Optical transmission and absorption spectroscopy measurement reveal an energy band gap of about 1.05 eV and an absorption coefficient of 10^5 cm^-1. The film resistivity is about 0.01 Ωcm.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904030)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091301120002)
文摘High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,
基金Supported by the Bandar Abbas Branch of the Islamic Azad University
文摘Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.
基金supported by the MOST of China(No.2010CB631301 and 2012CBA01207)NSFC(No.U1201241,11375020 and 21321001)
文摘Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.
基金Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0202201the National Natural Science Foundation of China under Grant Nos 61290304,11574335 and 61376016+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe 333 Project of Jiangsu province under Grant No BRA2017352
文摘We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field en- hancement effects. In addition, the oxide spacer layer between the metal (e.g., AI, Ag and Au) substrate and the perovskite film plays an important role. The simulations and experiments imply that the enhancement is related to surface plasmons of nano-structural metals.
基金Supported by the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’Large-Scale Scientific Facility under Grant No U1532149the National Basic Research Program of China under Grant No2014CB931704
文摘Polycrystalline LaCrO3(LCO) thin films are deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition and used as the switching material to construct resistive random access memory devices. The unipolar resistive switching(RS) behavior in the Au/LCO/Pt devices exhibits a high resistance ratio of ~104 between the high resistance state(HRS) and low resistance state(LRS) and exhibits excellent endurance/retention characteristics.The conduction mechanism of the HRS in the high voltage range is dominated by the Schottky emission, while the Ohmic conduction dictates the LRS and the low voltage range of HRS. The RS behavior in the Au/LCO/Pt devices can be understood by the formation and rupture of conducting filaments consisting of oxygen vacancies,which is validated by the temperature dependence of resistance and x-ray photoelectron spectroscopy results.Further analysis shows that the reset current IR and reset power PR in the reset processes exhibit a scaling law with the resistance in LRS(R0), which indicates that the Joule heating effect plays an essential role in the RS behavior of the Au/LCO/Pt devices.
基金Project supported by National Natural Science Foundation (Grant Nos 60221502 and 60223006) and Shanghai R&D Foundation for Applied Materials (Grant No 0316).
文摘SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300-400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal-insulator-semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole-Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 10^11Ω.cm under the voltage lower than 10V (corresponding to the electric field of 1.54×10^3kV.cm^-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal-ferroelectric-insulator-semiconductor (MFIS) structures.
基金supported by the National Natural Science Foundation of China(Grant No.61474103)the Chinese Scholarship Council(CSC)Fellowship for H.Tariq Masood and Z.Muhammad
文摘The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50942021 and 11075314)the Fundamental Research Fund for the Central Universities (Grant No. CDJXS10102207)
文摘Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400℃ to 800℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400℃ to 800℃.
基金financially supported by the National Natural Science Foundation of China (Nos. 51401046, 51572042, 61131005, 61021061, and 61271037)International Cooperation Projects (Nos. 2013HH0003 and 2015DFR50870)+3 种基金the 111 Project (No. B13042)the Sichuan Province S&T program (Nos. 2014GZ0003, 2015GZ0091, and 2015GZ0069)Fundamental Research Funds for the Central Universitiesthe start-up fund from the University of Electronic Science and Technology of China
文摘VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.
基金Cambridge Trust and China Scholarship Councilthe support from the UK Royal Academy of Engineering,grant CiET1819_24,EPSRC grants EP/L011700/1,EP/N004272/1,EP/P007767/1(CAM-IES),and EP/T012218/1。
文摘In this work,we have developed a new method for manipulating and transferring up to 5 mm×10 mm epitaxial oxide thin films.The method involves fixing a PET frame onto a PMMA attachment film,enabling transfer of epitaxial films lifted-off by wet chemical etching of a Sr3Al2O6 sacrificial layer.The crystallinity,surface morphology,continuity,and purity of the films are all preserved in the transfer process.We demonstrate the applicability of our method for three different film compositions and structures of thickness~100 nm.Furthermore,we show that by using epitaxial nanocomposite films,lift-off yield is improved by~50% compared to plain epitaxial films and we ascribe this effect to the higher fracture toughness of the composites.This work shows important steps towards large-scale perovskite thin-film-based electronic device applications.