The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs). A novel grain boundary model was developed to analyse the effect. The model was characterized with di...The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs). A novel grain boundary model was developed to analyse the effect. The model was characterized with different angles between the orientation of the grain boundary and the channel direction. The potential barriers formed by the grain boundaries increase with the increase of the grain boundary angle, so the degradation of the transistor characteristics increases. When a grain boundary is close to the drain edge, the potential barrier height reduces, so the electric properties were improved.展开更多
The influence of white light illumination on the stability of an amorphous In GaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light e...The influence of white light illumination on the stability of an amorphous In GaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed.展开更多
This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C6...This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V. s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.展开更多
The instabilities of indium–zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current...The instabilities of indium–zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current–voltage characteristics and electrical parameters(such as threshold voltage and sub-threshold swing) are dominated by the stress-induced ionized oxygen vacancies and acceptor-like states. The dependence of degradation on light wavelength is also investigated. More negative shift of threshold voltage and greater sub-threshold swing are observed with the decrease of light wavelength.Subsequently, a negative bias illumination stress experiment is carried out. The degradation of the device is aggravated due to the decrease of recombination effects between ionized oxygen vacancies and free carriers. Moreover, the contributions of ionized oxygen vacancies and acceptor-like states are separated by using the mid-gap method. In addition, ionized oxygen vacancies are partially recombined at room temperature and fully recombined at high temperature. Finally, low-frequency noise is measured before and after negative bias illumination stress. Experimental results show few variations of the oxide trapped charges are generated during stress, which is consistent with the proposed mechanism.展开更多
Under the action of a positive gate bias stress, a hump in the subthreshold region of the transfer characteristic is observed for the amorphous indium-gallium-zinc oxide thin film transistor, which adopts an elevated-...Under the action of a positive gate bias stress, a hump in the subthreshold region of the transfer characteristic is observed for the amorphous indium-gallium-zinc oxide thin film transistor, which adopts an elevated-metal metal-oxide structure. As stress time goes by, both the on-state current and the hump shift towards the negative gate-voltage direction. The humps occur at almost the same current levels for devices with different channel widths, which is attributed to the parasitic transistors located at the channel width edges. Therefore, we propose that the positive charges trapped at the back-channel interface cause the negative shift, and the origin of the hump is considered as being due to more positive charges trapped at the edges along the channel width direction. On the other hand, the hump-effect becomes more significant in a short channel device (L=2 μm). It is proposed that the diffusion of oxygen vacancies takes place from the high concentration source/drain region to the intrinsic channel region.展开更多
The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C6...The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C60 modification, the injection barrier is lowered and the contact resistance is reduced. Thus, the field-effect mobility increases from 0.12 to 0.52 cm2/(V.s). It means that inserting a C60 ultra thin layer is a good method to improve the organic thin film transistor (OTFT) performance. The output curve is simulated by using a charge drift model. Considering the contact effect, the field effect mobility is improved to 1.15 cm2/(V-s). It indicates that further reducing the contact resistance of OTFTs should be carried out.展开更多
An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled mo...An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled monolayers(SAM) to chemically treat the silver source–drain(S/D) contacts while the silicon oxide(SiO2) dielectric interface is further primed by either hexamethyldisilazane(HMDS) or octyltrichlorosilane(OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm^2·V^-1·s^-1 to 0.91 cm^2·V^-1·s^-1.展开更多
High throughput experimental methods are known to accelerate the rate of research,development,and deployment of electronic materials.For example,thin films with lateral gradients in composition,thickness,or other para...High throughput experimental methods are known to accelerate the rate of research,development,and deployment of electronic materials.For example,thin films with lateral gradients in composition,thickness,or other parameters have been used alongside spatially-resolved characterization to assess how various physical factors affect the material properties under varying measurement conditions.Similarly,multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance.In this work,we apply these high throughput experimental methods to thin film transistors(TFTs),demonstrating combinatorial channel layer growth,device fabrication,and semi-automated characterization using sputtered oxide TFTs as a case study.We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library,such as channel thickness and length,channel cation compositions,and oxygen atmosphere during deposition.We also present a semi-automated method to measure the 44 devices fabricated on a 50 mm×50 mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time.Finally,we propose a fully automated characterization system for similar TFT libraries,which can be coupled with high throughput data analysis.These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.展开更多
The transfer characteristics of amorphous indium-zinc-oxide thin film transistors are measured in the temperature range of 10-400K. The variation of electrical parameters (threshold voltage, field effect mobility, su...The transfer characteristics of amorphous indium-zinc-oxide thin film transistors are measured in the temperature range of 10-400K. The variation of electrical parameters (threshold voltage, field effect mobility, sub-threshold swing, and leafage current) with decreasing temperature are then extracted and analyzed. Moreover, the dom- inated carrier transport mechanisms at different temperature regions are investigated. The experimental data show that the carrier transport mechanism may change from trap-limited conduction to variable range hopping conduction at lower temperature. Moreover, the field effect mobilities are also extracted and simulated at various temperatures.展开更多
The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate...The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate-source voltage on the contact length (source and drain electrodes' length) related contact resistance of bottom-contact OTFTs are performed with a modified transmission line model. It is found that the contact resistance increases dramatically when the contact length is scaled down to 20O nm. With the help of the contact length related contact resistance, contact-size-dependent fT Of bottom-contact OTFTs is studied and it is found that fr increases with the decrease of the contact length in bottom-contact OTFTs.展开更多
The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measur...The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measured before and after radiation. The experimental results show that threshold voltage and hole-field-effect mobility decrease, while sub-threshold swing and low-frequency noise increase with the increase of the total dose. The contributions of radiation induced interface states and oxide trapped charges to the shift of threshold voltage are also estimated. Furthermore, spatial distributions of oxide trapped charges before and after radiation are extracted based on the LFN measurements.展开更多
Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we ex...Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.展开更多
Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysi...Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.展开更多
High performance pentacene organic thin film transistors (OTFT) were designed and fabricated using SiO2 deposited by electron beam evaporation as gate dielectric material. Pentacene thin films were prepared on glass...High performance pentacene organic thin film transistors (OTFT) were designed and fabricated using SiO2 deposited by electron beam evaporation as gate dielectric material. Pentacene thin films were prepared on glass substrate with S-D electrode pattern made from ITO by means of thermal evaporation through self-organized process. The threshold voltage VTH was -2.75±0.1V in 0-50V range, and that subthreshold slopes were 0.42±0.05V/dec. The field-effect mobility (μEF) of OTFT device increased with the increase of VDS, but the μEF of OTFT device increased and then decreased with increased VGS when VDS was kept constant. When VDS was -50V, on/off current ratio was 0.48×10^5 and subthreshold slope was 0.44V/dec. The μEF was 1.10cm^2/(V.s), threshold voltage was -2.71V for the OTFT device.展开更多
Polymer thin-film transistors (PTFTs) based on poly(3-hexylthiophene) are fabricated by the spin-coating process, and their photo-sensing characteristics are investigated under steady-state visible-light illuminat...Polymer thin-film transistors (PTFTs) based on poly(3-hexylthiophene) are fabricated by the spin-coating process, and their photo-sensing characteristics are investigated under steady-state visible-light illumination. The photosensitivity of the device is strongly modulated by gate voltage under various illuminations. When the device is in the subthreshold operating mode, a significant increase in its drain current is observed with a maximum photosensitivity of 1.7×10^3 at an illumination intensity of 1200 lx, and even with a relatively high photosensitivity of 611 at a low illumination intensity of 100 lx. However, when the device is in the on-state operating mode, the photosensitivity is very low: only 1.88 at an illumination intensity of 1200 lx for a gate voltage of -20 V and a drain voltage of -20 V. The results indicate that the devices could be used as photo-detectors or sensors in the range of visible light. The modulation mechanism of the photosensitivity in the PTFT is discussed in detail.展开更多
We report a model of the carrier transport and the subgap density of states in a polycrystalline ZnO film for simulating a polycrystalline ZnO thin film transistor. This simple model considering the deep and the band ...We report a model of the carrier transport and the subgap density of states in a polycrystalline ZnO film for simulating a polycrystalline ZnO thin film transistor. This simple model considering the deep and the band tail states reproduces well the characteristics of polycrystalline ZnO thin film transistors. Furthermore, using the developed model, we study the effects of defect parameters on the electrical performances of the polycrystalline ZnO thin film transistors.展开更多
The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the dev...The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the device accurately, both tail states and deep-level states are taken into consideration. It is shown that both the transfer and output characteristics of ZnO TFTs change dramatically with varying GB position, which is different from polycrystalline Si (poly-Si) TFTs. By analysing the mechanism of the carrier transportation in the device, it is revealed that the dependence is derived from the degrees of carrier concentration descent and mobility variation with CB position.展开更多
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o...Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.展开更多
In this paper, a photo-modulated transistor based on the thin-film transistor structure was fabricated on the flexible substrate by spin-coating and magnetron sputtering. A novel hybrid material that composed of Cd Se...In this paper, a photo-modulated transistor based on the thin-film transistor structure was fabricated on the flexible substrate by spin-coating and magnetron sputtering. A novel hybrid material that composed of Cd Se quantum dots and reduced graphene oxide(RGO) fragment-decorated ZnO nanowires was synthesized to overcome the narrow optical sensitive waveband and enhance the photo-responsivity. Due to the enrichment of the interface and heterostructure by RGO fragments being utilized, the photo-responsivity of the transistor was improved to 2000 AW^(-1) and the photo-sensitive wavelength was extended from ultraviolet to visible. In addition, a positive back-gate voltage was employed to reduce the Schottky barrier width of RGO fragments and ZnO nanowires. As a result, the amount of carriers was increased by 10 folds via the modulation of back-gate voltage. With these inherent properties, such as integrated circuit capability and wide optical sensitive waveband, the transistor will manifest great potential in the future applications in photodetectors.展开更多
The positive gate-bias temperature instability of a radio frequency (RF) sputtered ZnO thin-film transistor (ZnO TFT) is investigated. Under positive gate-bias stress, the saturation drain current and OFF-state cu...The positive gate-bias temperature instability of a radio frequency (RF) sputtered ZnO thin-film transistor (ZnO TFT) is investigated. Under positive gate-bias stress, the saturation drain current and OFF-state current decrease, and the threshold voltage shifts toward the positive direction. The stress amplitude and stress temperature are considered as important factors in threshold-voltage instability, and the time dependences of threshold voltage shift under various bias temperature stress conditions could be described by a stretched-exponential equation. Based on the analysis of hysteresis behaviors in current- voltage and capacitance-voltage characteristics before and after the gate-bias stress, it can be clarified that the threshold- voltage shift is predominantly attributed to the trapping of negative charge carriers in the defect states located at the gate- dielectric/channel interface.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 50677014,50602014 and 10874042)the National High Technology Joint Research Program of China (Grant No 2006AA04A104)the Science-Technology Foundation of Hunan Province of China (Grant Nos 2008RS4003 and 07jj107)
文摘The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs). A novel grain boundary model was developed to analyse the effect. The model was characterized with different angles between the orientation of the grain boundary and the channel direction. The potential barriers formed by the grain boundaries increase with the increase of the grain boundary angle, so the degradation of the transistor characteristics increases. When a grain boundary is close to the drain edge, the potential barrier height reduces, so the electric properties were improved.
基金supported by the State Key Program for Basic Research of China(Grant Nos.2011CB301900 and 2011CB922100)the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province,China
文摘The influence of white light illumination on the stability of an amorphous In GaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 60676033)
文摘This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V. s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.
基金supported by the Opening Fund of Key Laboratory of Silicon Device Technology,Chinese Academy of Sciences(Grant No.KLSDTJJ2018-6)the National Natural Science Foundation of China(Grant No.61574048)+1 种基金the Science and Technology Research Project of Guangdong Province,China(Grant No.2015B090912002)the Pearl River S&T Nova Program of Guangzhou City,China(Grant No.201710010172)
文摘The instabilities of indium–zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current–voltage characteristics and electrical parameters(such as threshold voltage and sub-threshold swing) are dominated by the stress-induced ionized oxygen vacancies and acceptor-like states. The dependence of degradation on light wavelength is also investigated. More negative shift of threshold voltage and greater sub-threshold swing are observed with the decrease of light wavelength.Subsequently, a negative bias illumination stress experiment is carried out. The degradation of the device is aggravated due to the decrease of recombination effects between ionized oxygen vacancies and free carriers. Moreover, the contributions of ionized oxygen vacancies and acceptor-like states are separated by using the mid-gap method. In addition, ionized oxygen vacancies are partially recombined at room temperature and fully recombined at high temperature. Finally, low-frequency noise is measured before and after negative bias illumination stress. Experimental results show few variations of the oxide trapped charges are generated during stress, which is consistent with the proposed mechanism.
基金Project supported by the Science and Technology Program of Suzhou City,China(Grant No.SYG201538)the National Natural Science Foundation of China(Grant No.61574096)
文摘Under the action of a positive gate bias stress, a hump in the subthreshold region of the transfer characteristic is observed for the amorphous indium-gallium-zinc oxide thin film transistor, which adopts an elevated-metal metal-oxide structure. As stress time goes by, both the on-state current and the hump shift towards the negative gate-voltage direction. The humps occur at almost the same current levels for devices with different channel widths, which is attributed to the parasitic transistors located at the channel width edges. Therefore, we propose that the positive charges trapped at the back-channel interface cause the negative shift, and the origin of the hump is considered as being due to more positive charges trapped at the edges along the channel width direction. On the other hand, the hump-effect becomes more significant in a short channel device (L=2 μm). It is proposed that the diffusion of oxygen vacancies takes place from the high concentration source/drain region to the intrinsic channel region.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774013,10974013,60978060 and 10804006)the Research Fund for the Doctoral Program of Higher Education,China(Grant Nos.20090009110027,20070004024 and 20070004031)+1 种基金the Beijing Municipal Science and Technology Commission(Grant No.1102028)the National Basic Research Program of China(Grant No.2010CB327704)
文摘The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C60 modification, the injection barrier is lowered and the contact resistance is reduced. Thus, the field-effect mobility increases from 0.12 to 0.52 cm2/(V.s). It means that inserting a C60 ultra thin layer is a good method to improve the organic thin film transistor (OTFT) performance. The output curve is simulated by using a charge drift model. Considering the contact effect, the field effect mobility is improved to 1.15 cm2/(V-s). It indicates that further reducing the contact resistance of OTFTs should be carried out.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328803)
文摘An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled monolayers(SAM) to chemically treat the silver source–drain(S/D) contacts while the silicon oxide(SiO2) dielectric interface is further primed by either hexamethyldisilazane(HMDS) or octyltrichlorosilane(OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm^2·V^-1·s^-1 to 0.91 cm^2·V^-1·s^-1.
基金the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308Funding provided by Laboratory Directed Research and Development (LDRD) program at NREL. Y. H+1 种基金support from Science and Technology Commission of Shanghai Municipality (Grant No. 16JC1400603)a grant from the National Natural Science Foundation of China (Grant No. 61471126)
文摘High throughput experimental methods are known to accelerate the rate of research,development,and deployment of electronic materials.For example,thin films with lateral gradients in composition,thickness,or other parameters have been used alongside spatially-resolved characterization to assess how various physical factors affect the material properties under varying measurement conditions.Similarly,multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance.In this work,we apply these high throughput experimental methods to thin film transistors(TFTs),demonstrating combinatorial channel layer growth,device fabrication,and semi-automated characterization using sputtered oxide TFTs as a case study.We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library,such as channel thickness and length,channel cation compositions,and oxygen atmosphere during deposition.We also present a semi-automated method to measure the 44 devices fabricated on a 50 mm×50 mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time.Finally,we propose a fully automated characterization system for similar TFT libraries,which can be coupled with high throughput data analysis.These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.
基金Supported by the National Natural Science Foundation of China under Grant No 61574048the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172+1 种基金the International Science and Technology Cooperation Program of Guangzhou under Grant No 201807010006the Opening Fund of Key Laboratory of Silicon Device Technology under Grant No KLSDTJJ2018-6
文摘The transfer characteristics of amorphous indium-zinc-oxide thin film transistors are measured in the temperature range of 10-400K. The variation of electrical parameters (threshold voltage, field effect mobility, sub-threshold swing, and leafage current) with decreasing temperature are then extracted and analyzed. Moreover, the dom- inated carrier transport mechanisms at different temperature regions are investigated. The experimental data show that the carrier transport mechanism may change from trap-limited conduction to variable range hopping conduction at lower temperature. Moreover, the field effect mobilities are also extracted and simulated at various temperatures.
基金Supported by the State Key Fundamental Research Project of China under Grant No 2011CBA00606the National Natural Science Foundation of China under Grant Nos 51503167 and 61574107
文摘The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate-source voltage on the contact length (source and drain electrodes' length) related contact resistance of bottom-contact OTFTs are performed with a modified transmission line model. It is found that the contact resistance increases dramatically when the contact length is scaled down to 20O nm. With the help of the contact length related contact resistance, contact-size-dependent fT Of bottom-contact OTFTs is studied and it is found that fr increases with the decrease of the contact length in bottom-contact OTFTs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61574048 and 61204112the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2014A030313656the Pearl River S&T Nova Program of Guangzhou
文摘The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measured before and after radiation. The experimental results show that threshold voltage and hole-field-effect mobility decrease, while sub-threshold swing and low-frequency noise increase with the increase of the total dose. The contributions of radiation induced interface states and oxide trapped charges to the shift of threshold voltage are also estimated. Furthermore, spatial distributions of oxide trapped charges before and after radiation are extracted based on the LFN measurements.
基金Supported by the National Natural Science Foundation of China under Grant No 61574048the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172
文摘Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0400100)the National Natural Science Foundation of China(Grant No.91850112)+3 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161401)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Science and Technology Project of State Grid Corporation of China(Grant No.SGSDDK00KJJS1600071)the Fundamental Research Funds for the Central Universities,China(Grant No.14380098)
文摘Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.
基金supported by the National Natural Science Foundation of China (Grant No 60576016)the National High Technology Research and Development Program of China (Grant No 2006AA03Z0412)+3 种基金the Beijing Natural Science Foundation of China (Grant No 2073030)the National Grand Fundamental Research 973 Program of China (Grant No 2003CB314707)the National Natural Science Foundation of China (Grant No 10434030)the Excellent Doctor's Science and Technology Innovation Foundation of Beijing Jiaotong University of China (Grant No 48024)
文摘High performance pentacene organic thin film transistors (OTFT) were designed and fabricated using SiO2 deposited by electron beam evaporation as gate dielectric material. Pentacene thin films were prepared on glass substrate with S-D electrode pattern made from ITO by means of thermal evaporation through self-organized process. The threshold voltage VTH was -2.75±0.1V in 0-50V range, and that subthreshold slopes were 0.42±0.05V/dec. The field-effect mobility (μEF) of OTFT device increased with the increase of VDS, but the μEF of OTFT device increased and then decreased with increased VGS when VDS was kept constant. When VDS was -50V, on/off current ratio was 0.48×10^5 and subthreshold slope was 0.44V/dec. The μEF was 1.10cm^2/(V.s), threshold voltage was -2.71V for the OTFT device.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 61076113)the Natural Science Foundation of Guangdong Province,China (Grant No. 8451064101000257)the Research Grants Council (RGC) of Hong Kong Special Administrative Region (HKSAR),China (Grant No. HKU 7133/07E)
文摘Polymer thin-film transistors (PTFTs) based on poly(3-hexylthiophene) are fabricated by the spin-coating process, and their photo-sensing characteristics are investigated under steady-state visible-light illumination. The photosensitivity of the device is strongly modulated by gate voltage under various illuminations. When the device is in the subthreshold operating mode, a significant increase in its drain current is observed with a maximum photosensitivity of 1.7×10^3 at an illumination intensity of 1200 lx, and even with a relatively high photosensitivity of 611 at a low illumination intensity of 100 lx. However, when the device is in the on-state operating mode, the photosensitivity is very low: only 1.88 at an illumination intensity of 1200 lx for a gate voltage of -20 V and a drain voltage of -20 V. The results indicate that the devices could be used as photo-detectors or sensors in the range of visible light. The modulation mechanism of the photosensitivity in the PTFT is discussed in detail.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.K50510250001)
文摘We report a model of the carrier transport and the subgap density of states in a polycrystalline ZnO film for simulating a polycrystalline ZnO thin film transistor. This simple model considering the deep and the band tail states reproduces well the characteristics of polycrystalline ZnO thin film transistors. Furthermore, using the developed model, we study the effects of defect parameters on the electrical performances of the polycrystalline ZnO thin film transistors.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50872112)NPU Foundation for Fundamental Research,China (Grant No. JC201017)
文摘The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the device accurately, both tail states and deep-level states are taken into consideration. It is shown that both the transfer and output characteristics of ZnO TFTs change dramatically with varying GB position, which is different from polycrystalline Si (poly-Si) TFTs. By analysing the mechanism of the carrier transportation in the device, it is revealed that the dependence is derived from the degrees of carrier concentration descent and mobility variation with CB position.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Natural Science Foundation of Guangdong Province(Grant No.2016A030313474)the University Development Fund(Nanotechnology Research Institute,Grant No.00600009)of the University of Hong Kong,China
文摘Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.
基金partially supported by the National Key Basic Research Program 973 (2013CB328804, 2013CB328803)the National High-Tech R&D Program 863 of China (2012AA03A302, 2013AA011004)+4 种基金the National Natural Science Foundation Project (51120125001, 61271053, 61306140, 61405033, 91333118, 61372030, 61307077 and 51202028)the Beijing Natural Science Foundation (4144076)the China Postdoctoral Science Foundation (2013M530613 and 2015T80080)the Natural Science Foundation Project of Jiangsu Province (BK20141390, BK20130629, and BK20130618)the Scientific Research Department of Graduate School in Southeast University
文摘In this paper, a photo-modulated transistor based on the thin-film transistor structure was fabricated on the flexible substrate by spin-coating and magnetron sputtering. A novel hybrid material that composed of Cd Se quantum dots and reduced graphene oxide(RGO) fragment-decorated ZnO nanowires was synthesized to overcome the narrow optical sensitive waveband and enhance the photo-responsivity. Due to the enrichment of the interface and heterostructure by RGO fragments being utilized, the photo-responsivity of the transistor was improved to 2000 AW^(-1) and the photo-sensitive wavelength was extended from ultraviolet to visible. In addition, a positive back-gate voltage was employed to reduce the Schottky barrier width of RGO fragments and ZnO nanowires. As a result, the amount of carriers was increased by 10 folds via the modulation of back-gate voltage. With these inherent properties, such as integrated circuit capability and wide optical sensitive waveband, the transistor will manifest great potential in the future applications in photodetectors.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Research Grants Council of Hong Kong,China(Grant No.7133/07E)
文摘The positive gate-bias temperature instability of a radio frequency (RF) sputtered ZnO thin-film transistor (ZnO TFT) is investigated. Under positive gate-bias stress, the saturation drain current and OFF-state current decrease, and the threshold voltage shifts toward the positive direction. The stress amplitude and stress temperature are considered as important factors in threshold-voltage instability, and the time dependences of threshold voltage shift under various bias temperature stress conditions could be described by a stretched-exponential equation. Based on the analysis of hysteresis behaviors in current- voltage and capacitance-voltage characteristics before and after the gate-bias stress, it can be clarified that the threshold- voltage shift is predominantly attributed to the trapping of negative charge carriers in the defect states located at the gate- dielectric/channel interface.