SnO_(2)is used as electrode material with excellent properties,but it has some disadvantages such as slow reaction kinetics,low inherent conductivity and complex preparation process.Here,SnO_(2)@carbon nanotubes(SnO_(...SnO_(2)is used as electrode material with excellent properties,but it has some disadvantages such as slow reaction kinetics,low inherent conductivity and complex preparation process.Here,SnO_(2)@carbon nanotubes(SnO_(2)@CNTs)is synthesized through an efficient method of one-pot alternating current electrochemical dispersion.By using heat treatment at 400℃,the SnO_(2)@CNTs-400 composite material with abundant mesoporous structure is obtained,while the crystal particles are grown,and a strong bonding effect is formed with CNTs via powerful Sn-O-C bond.Benefiting from the introduction of high electrical conductivity CNTs and outstanding structural characteristics,as prepared composite material(SnO_(2)@CNTs-400)exhibit enhanced diffusion dynamics,lithium-ion transmission rate and structural steadiness.The specific capacity of SnO_(2)@CNTs and SnO_(2)@CNTs-400 as anodes for lithium-ion batteries can reach 690.2 mA·h/g and 836.5 mA·h/g,respectively,after 100 cycles at 0.5 A/g.The abundant chemical bonds and porous structure can be formed in composite via alternating current synthesis method,which takes significant in improving electrochemical properties.展开更多
Hexagonal boron nitride(h-BN)is found to have widespread application,owing to its outstanding properties,including gate dielectrics,passivation layers,and tunneling layers.The current studies on the funda⁃mental physi...Hexagonal boron nitride(h-BN)is found to have widespread application,owing to its outstanding properties,including gate dielectrics,passivation layers,and tunneling layers.The current studies on the funda⁃mental physical properties of these ultrathin h-BN films and the electron tunneling effect among them are inade⁃quate.In this work,the effective mass in h-BN was successfully determined through a combined approach of ex⁃perimental and theoretical research methods by fitting the current-voltage curves of metal/insulator/metal struc⁃tures.It was observed that within a range of 4-22 layers,the effective mass of h-BN exhibits a monotonic de⁃crease with an increase in the number of layers.The physical parameters of the Fowler-Nordheim tunneling model in the context of electron tunneling in h-BN are precisely ascertained by utilizing the extracted effective mass.Ad⁃ditionally,the impact of fixed charges at the metal/h-BN interface and various metal electrode types on FowlerNordheim tunneling within this structure is investigated utilizing this physical parameter in Sentaurus TCAD soft⁃ware.This work is informative and instructive in promoting applications in the fields of h-BN related infrared physics and technology.展开更多
基金Project(2023JЛ10041)supported by the Distinguished Young Scholar Fund Project of Hunan Province Natural Science Foundation,ChinaProject(22A0114)supported by the Hunan Provincial Education Office Foundation of China+2 种基金Projects(GX-ZD20211004,GX-ZD20221007)supported by the Science and Technology Program of Xiangtan,ChinaProject(R24-5979269037)supported by the RSC Research Fund Grout,EnglandProject(S202310530037X)supported by the National College Students Innovative Experimental Program Funding Project,China。
文摘SnO_(2)is used as electrode material with excellent properties,but it has some disadvantages such as slow reaction kinetics,low inherent conductivity and complex preparation process.Here,SnO_(2)@carbon nanotubes(SnO_(2)@CNTs)is synthesized through an efficient method of one-pot alternating current electrochemical dispersion.By using heat treatment at 400℃,the SnO_(2)@CNTs-400 composite material with abundant mesoporous structure is obtained,while the crystal particles are grown,and a strong bonding effect is formed with CNTs via powerful Sn-O-C bond.Benefiting from the introduction of high electrical conductivity CNTs and outstanding structural characteristics,as prepared composite material(SnO_(2)@CNTs-400)exhibit enhanced diffusion dynamics,lithium-ion transmission rate and structural steadiness.The specific capacity of SnO_(2)@CNTs and SnO_(2)@CNTs-400 as anodes for lithium-ion batteries can reach 690.2 mA·h/g and 836.5 mA·h/g,respectively,after 100 cycles at 0.5 A/g.The abundant chemical bonds and porous structure can be formed in composite via alternating current synthesis method,which takes significant in improving electrochemical properties.
基金Supported by the National Natural Science Foundation of China(62074085,62104118)。
文摘Hexagonal boron nitride(h-BN)is found to have widespread application,owing to its outstanding properties,including gate dielectrics,passivation layers,and tunneling layers.The current studies on the funda⁃mental physical properties of these ultrathin h-BN films and the electron tunneling effect among them are inade⁃quate.In this work,the effective mass in h-BN was successfully determined through a combined approach of ex⁃perimental and theoretical research methods by fitting the current-voltage curves of metal/insulator/metal struc⁃tures.It was observed that within a range of 4-22 layers,the effective mass of h-BN exhibits a monotonic de⁃crease with an increase in the number of layers.The physical parameters of the Fowler-Nordheim tunneling model in the context of electron tunneling in h-BN are precisely ascertained by utilizing the extracted effective mass.Ad⁃ditionally,the impact of fixed charges at the metal/h-BN interface and various metal electrode types on FowlerNordheim tunneling within this structure is investigated utilizing this physical parameter in Sentaurus TCAD soft⁃ware.This work is informative and instructive in promoting applications in the fields of h-BN related infrared physics and technology.