期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect 被引量:5
1
作者 Maryam Lori Dehsaraji Mohammad Arefi Abbas Loghman 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期119-134,共16页
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform... Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses. 展开更多
关键词 thickness stretching effect Shear and normal deformation theory Vibration analysis Length scale parameter Modified couple stress theory
在线阅读 下载PDF
Eigen value analysis of composite hollow shafts using modified EMBT formulation considering the shear deformation along the thickness direction
2
作者 Pavani Udatha A.S.Sekhar Velmurugan R 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期1-12,共12页
Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applicatio... Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applications.Dynamic modelling of these shafts is generally carried out using Equivalent Modulus Beam Theory(EMBT)and Layerwise Beam Theory(LBT)formulations.The EMBT formulation is modified by considering stacking sequence,shear normal coupling,bending twisting coupling and bending stretching coupling.It is observed that modified EMBT formulation is underestimating the shafts stiffness at lower length/mean diameter(l/dm)ratios.In the present work,a new formulation is developed by adding shear deformation along the thickness direction to the existing modified EMBT formulation.The variation of shear deformation along the thickness direction is found using different shear deformation theories,i.e.,first-order shear deformation theory(FSDBT),parabolic shear deformation theory(PSDBT),trigonometric shear deformation theory(TSDBT),and hyperbolic shear deformation theory(HSDBT).The analysis is performed at l/d_(m) ratios of 5,10,15,20,25,30,35,and 40 for carbon/epoxy composites,E-glass/epoxy composites,and boron/epoxy composite shafts.The results show that new formulation has improved the bending natural frequency of the composite shafts for l/d_(m)<15 in comparison with modified EMBT.The effect of new formulation is more significant for the second and third bending modes of natural frequencies. 展开更多
关键词 Composite hollow shafts Bending natural frequency Modified EMBT formulation thickness effect
在线阅读 下载PDF
Analysis of the stress wave and rarefaction wave produced by hypervelocity impact of sphere onto thin plate 被引量:7
3
作者 Ken Wen Xiao-wei Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第5期969-979,共11页
Shock wave is emitted into the plate and sphere when a sphere hypervelocity impacts onto a thin plate.The fragmentation and phase change of the material caused by the propagation and unloading of shock wave could resu... Shock wave is emitted into the plate and sphere when a sphere hypervelocity impacts onto a thin plate.The fragmentation and phase change of the material caused by the propagation and unloading of shock wave could result in the formation of debris cloud eventually.Propagation models are deduced based on one-dimensional shock wave theory and the geometry of sphere,which uses elliptic equations(corresponding to ellipsoid equations in physical space)to describe the propagation of shock wave and the rarefaction wave.The“Effective thickness”is defined as the critical plate thickness that ensures the rarefaction wave overtake the shock wave at the back of the sphere.The“Effective thickness”is directly related to the form of the debris cloud.The relation of the“Effective thickness”and the“Optimum thickness”is also discussed.The impacts of Al spheres onto Al plates are simulated within SPH to verify the propagation models and associated theories.The results show that the wave fronts predicted by the propagation models are closer to the simulation result at higher impact velocity.The curvatures of the wave fronts decrease with the increase of impact velocities.The predicted“Effective thickness”is consistent with the simulation results.The analysis about the shock wave propagation and unloading in this paper can provide a new sight and inspiration for the quantitative study of hypervelocity impact and space debris protection. 展开更多
关键词 Hypervelocity impact Debris cloud Shock wave Rarefaction wave effective thickness of plate
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部