Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coeffici...Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coefficients of thermal expansion, specific heat, Griineisen parameters, phonon densities of states and Debye temperatures are calculated at different temperatures and for different Si-doping concentrations. With the increase of the Si-doping concentration, the lattice constant decreases. At the same time, both the coefficient of thermal expansion and the specific heat at a constant volume of Hf1-mSixO2 also decreases. The Griineisen parameter is about 0.95 at temperatures less than 100 K. Compared with Si-doped HfO2, pure HfO2 has a higher Debye temperature when the temperature is less than 25 K, while it has lower Debye temperature when the temperature is higher than 50 K. Some simulation results fit well with the experimental data. We expect that our results will be helpful for understanding the local lattice structure and thermal properties of Hf1-mSixO2.展开更多
In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are foun...In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10964003 and 11164014)the Natural Science Foundation of Gansu Province, China (Grant No. 096RJZA102)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20096201120002)the China Postdoctoral Science Foundation (Grant Nos. 20100470886 and 201104324)
文摘Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coefficients of thermal expansion, specific heat, Griineisen parameters, phonon densities of states and Debye temperatures are calculated at different temperatures and for different Si-doping concentrations. With the increase of the Si-doping concentration, the lattice constant decreases. At the same time, both the coefficient of thermal expansion and the specific heat at a constant volume of Hf1-mSixO2 also decreases. The Griineisen parameter is about 0.95 at temperatures less than 100 K. Compared with Si-doped HfO2, pure HfO2 has a higher Debye temperature when the temperature is less than 25 K, while it has lower Debye temperature when the temperature is higher than 50 K. Some simulation results fit well with the experimental data. We expect that our results will be helpful for understanding the local lattice structure and thermal properties of Hf1-mSixO2.
基金the Higher Education Commission of Pakistan for partial funding.
文摘In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.