We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifte...We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.展开更多
Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion c...Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented.The XRD diffraction results demonstrate that only a close-packed hexagonal phase(α or α' phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties.Also,its thermal expansion coefficient is stable through solution treatment.展开更多
Constant temperature and pressure molecular dynamics (MD) simulations are performed to investigate the thermal expansivity of MgO at high pressure, by using effective pair-wise potentials which consist of Coulomb, d...Constant temperature and pressure molecular dynamics (MD) simulations are performed to investigate the thermal expansivity of MgO at high pressure, by using effective pair-wise potentials which consist of Coulomb, dispersion, and repulsion interactions that include polarization effects through the shell model (SM). In order to take into account non-central forces in crystals, the breathing shell model (BSM) is also introduced into the MD simulation. We present a comparison between the volume thermal expansion coefficient a dependences of pressure P at 300 and 2000 K that are obtained from the SM and BSM potentials and those derived from other experimental and theoretical methods in the case of MgO. Compared with the results obtained by using the SM potentials, the MD results obtained by using BSM potentials are more compressible. In an extended pressure and temperature range, the α value is also predicted. The properties of MgO in a pressure range of 0-200 GPa at temperatures up to 3500K are summarized.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No F050306
文摘We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.
基金Supported by the Postdoctoral Science Foundation of Hebei Province under Grant No B2017003008the National Natural Science Foundation of China under Grant Nos 51531005,51671166,51571174 and 51604241the Natural Science Foundation of Hebei Province under Grant No E2016203395
文摘Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented.The XRD diffraction results demonstrate that only a close-packed hexagonal phase(α or α' phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties.Also,its thermal expansion coefficient is stable through solution treatment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674120 and 10774121)the 'Qing Lan' Talent Engineering Funds by Lanzhou Jiaotong University of China (Grant No QL-06-22A)the Research Foundation from Ministry of Education of China (Grant No 209127)
文摘Constant temperature and pressure molecular dynamics (MD) simulations are performed to investigate the thermal expansivity of MgO at high pressure, by using effective pair-wise potentials which consist of Coulomb, dispersion, and repulsion interactions that include polarization effects through the shell model (SM). In order to take into account non-central forces in crystals, the breathing shell model (BSM) is also introduced into the MD simulation. We present a comparison between the volume thermal expansion coefficient a dependences of pressure P at 300 and 2000 K that are obtained from the SM and BSM potentials and those derived from other experimental and theoretical methods in the case of MgO. Compared with the results obtained by using the SM potentials, the MD results obtained by using BSM potentials are more compressible. In an extended pressure and temperature range, the α value is also predicted. The properties of MgO in a pressure range of 0-200 GPa at temperatures up to 3500K are summarized.