期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review 被引量:1
1
作者 RONG Xian YANG Yuqi ZHANG Jianxin 《材料导报》 北大核心 2025年第13期278-290,共13页
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to... In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life. 展开更多
关键词 vacuum insulation panel thermal conductivity thermal insulation energy conservation
在线阅读 下载PDF
Novel thermal interface materials based on mesocarbon microbeads with a high through-plane thermal conductivity
2
作者 SUN Zhi-peng MA Cheng +2 位作者 WANG Ji-tong QIAO Wen-ming LING Li-cheng 《新型炭材料(中英文)》 北大核心 2025年第2期440-455,共16页
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme... The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization. 展开更多
关键词 thermal interface material Mesocarbon microbeads Through-plane thermal conductivity
在线阅读 下载PDF
Efficiently enhancing thermal conductivity of polymer bonded explosives via the construction of primary-secondary thermal conductivity networks
3
作者 Xunyi Wang Peng Wang +4 位作者 Jie Chen Zhipeng Liu Yuxin Luo Wenbin Yang Guansong He 《Defence Technology(防务技术)》 2025年第6期95-103,共9页
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr... Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity. 展开更多
关键词 thermally conductive performance Primary-secondary thermally conductive networks Network density Polymer-bonded explosives
在线阅读 下载PDF
Phase, magnetism and thermal conductivity of glass ceramics from iron ore tailings 被引量:6
4
作者 陈浩 吴益文 +1 位作者 张鸿 李志成 《Journal of Central South University》 SCIE EI CAS 2014年第9期3456-3462,共7页
In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal... In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics. 展开更多
关键词 iron ore tailing glass ceramics MICROSTRUCTURE magnetic properties thermal conductivity
在线阅读 下载PDF
THERMAL CONDUCTIVITY OF THF CLATHRATE HYDRATE FROM 243 K TO 263 K 被引量:5
5
作者 HUANG Duzi~(1,2) and FAN Shuanshi~1(~1Center for Gas Hydrate, Guangzhou Institute of Energy Conversion, CAS, Guangzhou, 510070, Guangdong, China ~2 Department of Thermal Science & Energy Engineering, USTC, Hefei, 230036, Anhui, China) 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期71-75,共5页
Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of ... Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of crystal anisotropy, the THF hydrate was crushed to measure. In the test temperature value increases with the temperature increasing. 展开更多
关键词 THF in or IT thermal conductivity OF THF CLATHRATE HYDRATE FROM 243 K TO 263 K of that
在线阅读 下载PDF
Effects of TiO2 nanoparticles on thermal conductivity of heat transfer oil 被引量:8
6
作者 YIN Xiang KOU Guang-xiao +2 位作者 XU Ai-xiang FU Tao ZHU Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2129-2135,共7页
There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study,... There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50-300 ℃ for designing and developing heat transfer oil furnace and its heating systems. In the present study, the thermal conductivity values of heat transfer oil and TiO2 nano-oil in the above high temperature range were measured by a newly developed high-temperature thermal conductivity meter. Based on the principle of least square method, the thermal conductivity values obtained from experiments were fitted separately, and the correlation between thermal conductivity and temperature of heat transfer oil and TiO2 nano-oil was obtained. The results show that the thermal conductivity and the increased percentage of thermal conductivity of TiO2 nano-oil are proportional to the increase of particle size and mass fraction of nanoparticles, but thermal conductivity is in reverse proportion to the increase of temperature and the increased percentage of thermal conductivity is less affected by temperature. 展开更多
关键词 TiO2 nano-oil thermal conductivity NANOPARTICLE
在线阅读 下载PDF
Influence factors on thermal conductivity of ammonia-water nanofluids 被引量:4
7
作者 杨柳 杜垲 张小松 《Journal of Central South University》 SCIE EI CAS 2012年第6期1622-1628,共7页
In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with p... In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid. 展开更多
关键词 binary nanofluids AMMONIA-WATER thermal conductivity size effect dispersion stability
在线阅读 下载PDF
Determination of thermal conductivity of magnesium-alloys 被引量:9
8
作者 ZHOU Jie min 1,YANG Ying 1,Magne Lamvik 2,WANG Gang 1 (1.Department of Applied Physics and Heat Engineering, Central South University, Changsha 410083, China 2.Norwegian University of Science and Technology) 《Journal of Central South University of Technology》 2001年第1期60-63,共4页
An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which t... An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0 450 ℃ is about 95%. The method is applicable in the given temperature range. 展开更多
关键词 angstroms method thermal conductivity thermal diffusivity magnesium alloy
在线阅读 下载PDF
A 3D graphene/polyimide fiber framework with improved thermal conductivity and mechanical performance 被引量:2
9
作者 WANG Xian-peng HU Ai-ping +5 位作者 CHEN Xiao-hua LIU Ji-lei LI Yan-hua LI Chuan-yi WANG Han TANG Qun-li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1761-1777,共17页
The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management ... The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management materials.In this work,after the modification of polyimide(PI)fibers through oxidation and amination,the obtained PDA@OPI fibers(polydopamine(PDA)-modified pre-oxidized PI fibers)with abundant amino groups were mixed into graphene oxide(GO)to form uniform GO-PDA@OPI composites.Followed by evaporation,carbonization,graphitization and mechanical compaction,the G-gPDA@OPI films with a stable three-dimensional(3D)long-range interconnected covalent structure were built.In particular,due to the rich covalent bonds between GO layers and PDI@OPI fibers,the enhanced synergistic graphitization promotes an ordered graphitized structure with less interlayer distance between adjacent graphene sheets in composite film.As a result,the optimized G-gPDA@OPI film displays an improved tensile strength of 78.5 MPa,tensile strain of 19.4%and thermal conductivity of 1028 W/(m·K).Simultaneously,it also shows superior flexibility and high resilience.This work provides an easily-controlled and relatively low-cost route for fabricating multifunctional graphene heat dissipation films. 展开更多
关键词 graphene film modified polyimide fiber POLYDOPAMINE thermal conductivity mechanical properties
在线阅读 下载PDF
Significance of induced magnetic field and variable thermal conductivity on stagnation point flow of second grade fluid 被引量:2
10
作者 A.A.KHAN S.ILYAS +1 位作者 T.ABBAS R.ELLAHI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3381-3390,共10页
In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonline... In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonlinear set of particle differential equations is converted into set of ordinary differential equations through appropriate transformation.The resulting equations are then resolved by optimal homotopy analysis method.The effect of pertinent parameters of interest on skin friction coefficient,temperature,induced magnetic field,velocity and local Nusselt number is inspected by generating appropriate plots.For numerical results,the built-in bvp4 c technique in computational software MATLAB is used for the convergence and residual errors of obtained series solution.It is perceived that the induced magnetic field is intensified by increasing β.It can also be observed that skin friction coefficient enhances with increasing value of magnetic parameter depending on the stretching ratio a/c.For the validness of the obtained results,a comparison has been made and an excellent agreement of current study with existing literature is found. 展开更多
关键词 stagnation point variable thermal conductivity induced magnetic field second grade fluid
在线阅读 下载PDF
Microstructure and thermal conductivity of carbon/carbon composites made with different kinds of carbon fibers 被引量:2
11
作者 陈洁 龙莹 +1 位作者 熊翔 肖鹏 《Journal of Central South University》 SCIE EI CAS 2012年第7期1780-1784,共5页
The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal condu... The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity. 展开更多
关键词 carbon fiber thermal conductivity PYROCARBON
在线阅读 下载PDF
Quantitative analysis on influencing factors for interface propagation-based thermal conductivity measurement method during solid-liquid transition 被引量:1
12
作者 ZHOU Tian MA Xiao-yi +1 位作者 LIU Xu LI Yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2041-2055,共15页
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i... The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively. 展开更多
关键词 phase change material thermal conductivity measurement influencing factor interface propagation-based method numerical simulation
在线阅读 下载PDF
Thermal conductivity modeling of water containing metal oxide nanoparticles 被引量:1
13
作者 Ahmad Azari 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1141-1145,共5页
The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in th... The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation. 展开更多
关键词 nanofluid effective thermal conductivity nanoparticle nanolayer modeling
在线阅读 下载PDF
Mechanical properties and thermal conductivity of pristine and functionalized carbon nanotube reinforced metallic glass composites:A molecular dynamics approach
14
作者 Sumit Sharma S.K.Tiwari Sagar Shakya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期234-244,共11页
This work uses the molecular dynamics approach to study the effects of functionalization of carbon nanotubes(CNTs)on the mechanical properties of Cu64Zr36 metallic glass(MG).Three types of functional groups,carboxylic... This work uses the molecular dynamics approach to study the effects of functionalization of carbon nanotubes(CNTs)on the mechanical properties of Cu64Zr36 metallic glass(MG).Three types of functional groups,carboxylic,vinyl and ester were used.The effect of CNT volume fraction(Vf)and the number of functional groups attached to CNT,on the mechanical properties and thermal conductivity of CNT-MG composites was analysed using Biovia Materials Studio.At lower values of Vf(from 0 to 5%),the percentage increase in Young’s modulus was approximately 66%.As the value of Vf was increased further(from 5 to 12%),the rate of increase in Young’s modulus was reduced to 16%.The thermal conductivity was found to increase from 1.52 W/mK at Vf?0%to 5.88 W/mK at Vf?12%,thus giving an increase of approximately 286%.Functionalization of SWCNT reduced the thermal conductivity of the SWCNT-MG composites. 展开更多
关键词 Molecular dynamics Carbon nanotube Metallic glass Mechanical properties thermal conductivity
在线阅读 下载PDF
MHD three dimensional flow of viscoelastic fluid with thermal radiation and variable thermal conductivity
15
作者 SHEHZAD S A HAYAT T ALSAEDI A 《Journal of Central South University》 SCIE EI CAS 2014年第10期3911-3917,共7页
The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable t... The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε. 展开更多
关键词 three dimensional flow viscoelastic fluid variable thermal conductivity thermal radiation
在线阅读 下载PDF
Charge-balanced codoping enables exceeding doping limit and ultralow thermal conductivity
16
作者 Long Chen Chun Wang +3 位作者 Lin Wang Minghao Wang Yongchun Zhu Changzheng Wu 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期1-7,I0009,共8页
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c... Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification. 展开更多
关键词 charge-balanced codoping heavy atom point defect grain boundary ultralow thermal conductivity
在线阅读 下载PDF
Flake Graphite on Mechanical,Anti-corrosion,and Thermal Conductivity Properties of Magnesium Potassium Phosphate Coating
17
作者 FAN Bingcheng ZHENG Yaxin LIU Yi 《材料科学与工程学报》 2025年第5期732-742,795,共12页
Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake gra... Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management. 展开更多
关键词 Flake graphite Anti-corrosion thermal conductivity Inorganic coatings
在线阅读 下载PDF
Size-dependent heat conduction of thermal cellular structures: A surface-enriched multiscale method
18
作者 Xiaofeng Xu Junfeng Li +2 位作者 Xuanhao Wu Ling Ling Li Li 《Defence Technology(防务技术)》 2025年第7期50-67,共18页
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe... This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods. 展开更多
关键词 thermal conductivity Surface-enriched multiscale method METAMATERIAL Surface effect Multi-scale modeling
在线阅读 下载PDF
An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes 被引量:7
19
作者 A.K.M Mahmudul Haque Sunghyun Kwon +4 位作者 Junhyo Kim Jungpil Noh Sunchul Huh Hanshik Chung Hyomin Jeong 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3202-3210,共9页
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ... High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid. 展开更多
关键词 GRAPHENE carbon nanotube SURFACTANT DISPERSIBILITY thermal conductivity
在线阅读 下载PDF
Transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM 被引量:4
20
作者 Sobhan Mosayebidorcheh Mohammad Rahimi-Gorji +3 位作者 D.D Ganji Taha Moayebidorcheh O Pourmehran M.Biglarian 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期675-682,共8页
This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transform... This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications. 展开更多
关键词 transient thermal behavior radial fin thermal conductivity temperature-dependent property hybrid differential transformation-finite difference (DTM-FDM)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部