[目的]重卡换电站能解决换电重卡充电时间长,续航里程短等痛点,但其动力电池存在容量大、使用频率高、热失控风险高等问题。[方法]为解决以上问题,文章建立了耦合双向充电机的电池热-电耦合模型,对电动重卡动力电池热特性进行研究,应用C...[目的]重卡换电站能解决换电重卡充电时间长,续航里程短等痛点,但其动力电池存在容量大、使用频率高、热失控风险高等问题。[方法]为解决以上问题,文章建立了耦合双向充电机的电池热-电耦合模型,对电动重卡动力电池热特性进行研究,应用COMSOL-SIMULINK进行联合仿真。[结果]仿真结果表明:所提出耦合模型,可以有效控制电池车辆到电网(Vehicle to Grid,V2G)工况下的电压电流。在V2G工况前期,最大电流密度在负极与负极极耳的交界处,最小电流密度在正极与正极极耳的交界处,正极极耳温度比负极极耳高4.1℃;在V2G工况后期,最大局部电流密度从极耳向电池下端转移,底部区域因浓度的影响有利于电化学反应,电芯温度高于极耳温度;热滥用工况下,副反应发生顺序为SEI膜分解、负极分解、正极与电解液反应,其中,电极副反应生热是导致电池进入无法返回的热失控的主要原因,SEI膜的分解反应是电池开始热失控的标志。[结论]所提外电路-热电耦合模型能有效反映在重卡换电站双向充电机激励下,电池热电耦合模型的温度分布与热失控影响。展开更多
以单根直埋敷设的10 k V三芯电缆为研究对象,建立了电缆暂态热路模型,并将其简化等效为一阶RC热路,根据所建立模型推导了应急时间与线芯温度的关系式。同时,设计了直埋敷设电缆加载不同应急负荷时的温升实验,实测了各组实验的应急时间...以单根直埋敷设的10 k V三芯电缆为研究对象,建立了电缆暂态热路模型,并将其简化等效为一阶RC热路,根据所建立模型推导了应急时间与线芯温度的关系式。同时,设计了直埋敷设电缆加载不同应急负荷时的温升实验,实测了各组实验的应急时间。通过与应急时间计算值的对比,分析实验结果与误差,验证了理论计算的正确性,并得到不同应急负荷下的电缆应急时间变化规律,为电力部门指导电力电缆的运行提供理论支持.展开更多
文摘[目的]重卡换电站能解决换电重卡充电时间长,续航里程短等痛点,但其动力电池存在容量大、使用频率高、热失控风险高等问题。[方法]为解决以上问题,文章建立了耦合双向充电机的电池热-电耦合模型,对电动重卡动力电池热特性进行研究,应用COMSOL-SIMULINK进行联合仿真。[结果]仿真结果表明:所提出耦合模型,可以有效控制电池车辆到电网(Vehicle to Grid,V2G)工况下的电压电流。在V2G工况前期,最大电流密度在负极与负极极耳的交界处,最小电流密度在正极与正极极耳的交界处,正极极耳温度比负极极耳高4.1℃;在V2G工况后期,最大局部电流密度从极耳向电池下端转移,底部区域因浓度的影响有利于电化学反应,电芯温度高于极耳温度;热滥用工况下,副反应发生顺序为SEI膜分解、负极分解、正极与电解液反应,其中,电极副反应生热是导致电池进入无法返回的热失控的主要原因,SEI膜的分解反应是电池开始热失控的标志。[结论]所提外电路-热电耦合模型能有效反映在重卡换电站双向充电机激励下,电池热电耦合模型的温度分布与热失控影响。
文摘以单根直埋敷设的10 k V三芯电缆为研究对象,建立了电缆暂态热路模型,并将其简化等效为一阶RC热路,根据所建立模型推导了应急时间与线芯温度的关系式。同时,设计了直埋敷设电缆加载不同应急负荷时的温升实验,实测了各组实验的应急时间。通过与应急时间计算值的对比,分析实验结果与误差,验证了理论计算的正确性,并得到不同应急负荷下的电缆应急时间变化规律,为电力部门指导电力电缆的运行提供理论支持.