An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. Th...An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.展开更多
This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in...This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in the respiratory tract.The two-layer model approach was used due to the Peri Ciliary liquid Layer(PCL) and Airway Ciliary Layer(ACL) present on the epithelium cell in respiratory tract.The mathematical modelling of two-layer flow problem was simplified using long wavelength and small Reynold ’ s number approximation.The resulting differential equation with moving boundary gives exact solution for velocity,temperature and concentration profiles in two layers.The change in pressure has calculated by the results of velocity profile,also the pressure rise was evaluated by the numerical integration of pressure gradient along the channel wall.The impact of physical parameters on pressure rise,velocity,temperature and concentration profile was explained by the graphs.It can be seen from graphs that velocity and temperature profile are maximum in the inner layer of fluid(PCL) and concentration profile is maximum at outer layers of fluid(ACL).展开更多
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,...The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agen...A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.展开更多
The damage process of concrete exposed to sodium sulfate attack and drying-wetting cycles was investigated. The water to binder(W/B) ratio and the concentration of sulfate solution were taken as variable parameters. T...The damage process of concrete exposed to sodium sulfate attack and drying-wetting cycles was investigated. The water to binder(W/B) ratio and the concentration of sulfate solution were taken as variable parameters. Through the experiment, visual change, relative dynamic modulus of elasticity(RDME) and the surface damage layer thickness of concrete were measured.Furthermore, SEM and thermal analysis were used to investigate the changing of microstructure and corrosion products of concrete.The test results show that the ultrasonic velocity is related to the damage layer of concrete. It approves that an increase in damage layer thickness reduces the compactness and the ultrasonic velocity. The deterioration degree of concrete could be estimated effectively by measuring the surface damage layer and the RDME of concrete. It is also found that the content of gypsum in concrete is less than that of ettringite in test, and some gypsum is checked only after a certain corrosion extent. When the concrete is with high W/B ratio or exposed to high concentration of sulfate solution, the content of ettringite first increases and then decreases with corrosion time. However, the content of gypsum increases at a steady rate. The content of corrosion products does not correspond well with the observations of RDME change, and extensive amount of corrosion products can be formed before obvious damage occurs.展开更多
Niobium(V) ethoxide(Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode,stainless steel as the cathode and tetraethylammonium chloride(TEAC) as the conductive a...Niobium(V) ethoxide(Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode,stainless steel as the cathode and tetraethylammonium chloride(TEAC) as the conductive additive.The condensates were isolated by vacuum distillation under 5 kPa.The product was characterized by Fourier transform infrared(FT-IR) spectra,Raman spectra and nuclear magnetic resonance(NMR) spectra.The results indicate that the product is niobium ethoxide.Thermal properties of niobium ethoxide were analysed by TG/DTG.Vapour pressure was calculated from the Langmuir equation and the enthalpy of vaporization was calculated from the vapour pressure-temperature data using the Clausius-Clapeyron equation.The concentrations of impurity metallic elements in the sample were detected by ICP-MS.It is shown that the purity can reach 99.997%.The volatility and purity of the niobium ethoxide ensure that it could be a good precursor for chemical vapor deposition and atomic layer deposition of niobium oxide layers.展开更多
Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content.To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF-HFP))on Al/MnO_(2) nanothermi...Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content.To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF-HFP))on Al/MnO_(2) nanothermite,the samples with different contents are prepared and characterized by SEM,TGDSC,XRD,and their ignition and combustion behavior are tested and recorded.The results show that P(VDF-HFP)as an energetic binder can combine the nanothermite components together,even exist in the gaps.The integrity of energetic materials has been improved.Thermal analysis shows that the addition of P(VDF-HFP)greatly changes the thermal reaction processes,and the exothermic peaks appear early,but the utilization of fuel and oxidizer is not efficient from the XRD results.Furthermore,the appropriate addition of P(VDF-HFP)can directly reduce the ignition energy threshold and increase the combustion time,which is necessary for the potential ignition charge application.The possible reasons for above phenomena are discussed and analyzed.This research provides a reference for improvement of thermitebased ignition charge formulation.展开更多
Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heati...Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.展开更多
Diaspore (α-AlOOH) was heated at various temperatures from 300 to 1 000 ℃ for 2 h. The alteration of diaspore by thermal treatment was investigated by differential thermal analysis, thermogravimetric analysis and ...Diaspore (α-AlOOH) was heated at various temperatures from 300 to 1 000 ℃ for 2 h. The alteration of diaspore by thermal treatment was investigated by differential thermal analysis, thermogravimetric analysis and X-ray diffraction. The mechanism of thermal decomposition of diaspore was discussed according to the Coats-Redfern (equation.) It is found that after thermal treatment at 500 ℃, diaspore is transformed entirely to corundum ((α-Al2O3).) Combined with the mass loss ratio obtained from the thermogravimetric analysis data, the activation energies for the thermal treatment of diaspore are calculated as Ea=10.4 kJ/mol below 400 ℃ and Eb=47.5 kJ/mol above 400 ℃, respectively, which is directly related to the structural alteration of diaspore during the thermal treatment. The results indicate that the thermal decomposition of diaspore is conducted primarily by means of an interfacial reaction.展开更多
In this study,to better understand the reaction mechanism between inorganic salts and nitrocellulose,CaCO_(3) and Li_(2)CO_(3) were evaluated with respect to their effects on the thermal degradation of NC in nitrogen ...In this study,to better understand the reaction mechanism between inorganic salts and nitrocellulose,CaCO_(3) and Li_(2)CO_(3) were evaluated with respect to their effects on the thermal degradation of NC in nitrogen atmosphere using TG/DSC at three different heating rates(2,5,10 K/min).The numerical relationship between activation energy(E)and conversion rate was obtained by FWO and KAS method,and it was discovered that CaCO_(3) could improve the thermal stability of NC.Activation energy values were calculated by Kissinger method,and it was found that NC that contain Li2CO3had the highest activation energy while NC containing CaCO3had the lowest E value.By combining the thermal analysis data with Malek method,the most probable mechanism model of thermal degradation is obtained as Sesták-Berggren model,which expression is f(α)=α^(m)(1-α)^(n).As a result of this study,there are certain guiding principles that can be applied to the pyrolysis reaction model and to the actual production process of nitrocellulose.展开更多
The chemical,physical,thermal and texture properties of iron ores from different regions of Odisha and Chhattisgarh regions,India,have been investigated to understand the compositional variations of Fe,Al2O3,SiO2,S an...The chemical,physical,thermal and texture properties of iron ores from different regions of Odisha and Chhattisgarh regions,India,have been investigated to understand the compositional variations of Fe,Al2O3,SiO2,S and P.They were analyzed for its susceptibility to meet the industrial requirements,for various iron manufacture techniques.Chemical analysis indicated that the majority of the iron ores is rich in hematite(>90wt%),poor in gangue(<4.09wt%SiO2and<3.8wt%Al2O3)and deleterious elements(P<0.065wt%and S<0.016wt%)in all these iron ores found to be low.XRD peaks reviled that the gangue is in the form of kaolinite and quartz,and same was observed in Fourier transform infrared(FTIR)spectroscopy in the range of914to1034cm–1.The iron ores were found to have excellent physical properties exemplify with tumbler index(82wt%–91wt%),abrasion index(1.27wt%–4.87wt%)and shatter index(0.87wt%–1.64wt%).FTIR and thermal analysis were performed to assimilate the analysis interpolations.It was found that these iron ores exhibit three endothermic reactions,which are dehydration below447K with mass loss of0.13wt%to1.7wt%,dehydroxylation at525–609K with mass loss of1.09wt%–4.49wt%and decomposition of aluminosilicates at597–850K with mass loss of0.13wt%–1.15wt%.From this study,we can conclude that due to its excellent physico-chemical characteristics,these iron ores are suitable for BF and DRI operations.展开更多
In this study,the effect of influencing parameters on the stress distribution around a polygonal cutout within a laminated composite under uniform heat flux was analytically examined.The analytical method was develope...In this study,the effect of influencing parameters on the stress distribution around a polygonal cutout within a laminated composite under uniform heat flux was analytically examined.The analytical method was developed based on the classical laminated plate theory and two-dimensional thermo-elastic method.A mapping function was employed to extend the solution of a perforated symmetric laminate with a circular cutout to the solution of polygonal cutouts.The effect of significant parameters such as the cutout angular position,bluntness and aspect ratio,the heat flux angle and the laminate stacking sequence in symmetric composite laminate containing triangular,square and pentagonal cutouts was studied.The Neumann boundary condition was used at the edges of the thermally insulated polygonal cutout.The laminate was made of graphite/epoxy(AS/3501) material with two different stacking sequences of [30/45]sand[30/0/-30]_(s).The analytical solutions were well validated against finite element results.展开更多
This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy ...This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.展开更多
The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is pr...The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is proposed using finite difference method,based on the partly homogenization hypothesis of material,to predict temperature field in the process of drilling unidirectional carbon fiber/epoxy(C/E)composites.According to the drilling feed motion,drilling process is divided into four stages to study the temperature distributing characteristics.The results show that the temperature distribution predicted by numerical study has a good agreement with the experimental results.The temperature increases with increasing the drilling depth,and the burn phenomena is observed due to the heat accumulation,especially at the drill exit.Due to the fiber orientation,an elliptical shape of the temperature field along the direction is found for both numerical and experimental studies of C/E composites drilling process.展开更多
Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the start...Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope(SEM), Energy Dispersive Spectroscopy(EDS) and Fourier Transform Infrared Spectroscopy(FTIR) methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, Cu Co-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of Cu Co-I nano-catalyst.展开更多
Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was...Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.展开更多
A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with t...A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.展开更多
The recovery of iron from iron sinking slag and lead smelter slag was investigated by desulfurization-reduction bath smelting. The effects of lead smelter slag(LSS) to iron sinking slag(ISS) mass ratio and temperature...The recovery of iron from iron sinking slag and lead smelter slag was investigated by desulfurization-reduction bath smelting. The effects of lead smelter slag(LSS) to iron sinking slag(ISS) mass ratio and temperature were investigated in desulfurization experiments. The X-ray diffraction(XRD) and X-ray fluorescence(XRF) analyses show that the optimum conditions are LSS:ISS of 3:7 and temperature of 1350°C. The composition of desulfurization products is mainly Zn Fe2O4, and the desulfurization rate of 99.66% is obtained under optimum conditions. The thermogravimetric(TG) and differential scanning calorimeter(DSC) analyses demonstrate that reductant is necessary for decomposition and reduction of zinc ferrite in desulfurization product. The effects of reductant, temperature and feeding modes on iron enrichment were investigated in reduction experiments. The scanning electron microscope(SEM) and energy dispersive spectrometer(EDS) determination show that the iron content of reduction product is up to 99.36% under optimum conditions of coke as reductant, reduction temperature of 1450°C and the feeding mode of premixing.展开更多
The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was propo...The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was proposed using a commercial analysis program, ANSYS Workbench 12, by analyzing the static-thermal characteristics of the developed high-accuracy tilting index table at its design stage. The results of the performed structural analysis show that the maximum stress is generated at the stock tail part. An optimum design for the stock tail part was carried out to reduce the maximum stress and deformation. Also, the design variables were determined by considering the support of the stock tail part for the C-axis body. In the comparison of the results before and after the optimization, the maximum deformation and stress are improved by 2.8% and 8%, respectively.展开更多
基金Project(50876016) support by the National Natural Science Foundation of China
文摘An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.
文摘This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in the respiratory tract.The two-layer model approach was used due to the Peri Ciliary liquid Layer(PCL) and Airway Ciliary Layer(ACL) present on the epithelium cell in respiratory tract.The mathematical modelling of two-layer flow problem was simplified using long wavelength and small Reynold ’ s number approximation.The resulting differential equation with moving boundary gives exact solution for velocity,temperature and concentration profiles in two layers.The change in pressure has calculated by the results of velocity profile,also the pressure rise was evaluated by the numerical integration of pressure gradient along the channel wall.The impact of physical parameters on pressure rise,velocity,temperature and concentration profile was explained by the graphs.It can be seen from graphs that velocity and temperature profile are maximum in the inner layer of fluid(PCL) and concentration profile is maximum at outer layers of fluid(ACL).
基金Project(NB-2020-JG-07)supported by the Research and Engineering Application of Key Technologies for New Building Industrialization Project of China Northwest Architectural Design and Research Institute Co.,Ltd.Project(2023-CXTD-29)supported by the Key Scientific and Technological Innovation Team of Shaanxi Province,ChinaProject supported by the K.C.Wong Education Foundation。
文摘The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
基金Project(20120023110011) supported by Doctoral Program of Higher Education of ChinaProjects(2009KH09,2009QH02) supported by the Fundamental Research Funds for the Central Universities of China
文摘A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.
基金Project(51278403)supported by the National Natural Science Foundation of China
文摘The damage process of concrete exposed to sodium sulfate attack and drying-wetting cycles was investigated. The water to binder(W/B) ratio and the concentration of sulfate solution were taken as variable parameters. Through the experiment, visual change, relative dynamic modulus of elasticity(RDME) and the surface damage layer thickness of concrete were measured.Furthermore, SEM and thermal analysis were used to investigate the changing of microstructure and corrosion products of concrete.The test results show that the ultrasonic velocity is related to the damage layer of concrete. It approves that an increase in damage layer thickness reduces the compactness and the ultrasonic velocity. The deterioration degree of concrete could be estimated effectively by measuring the surface damage layer and the RDME of concrete. It is also found that the content of gypsum in concrete is less than that of ettringite in test, and some gypsum is checked only after a certain corrosion extent. When the concrete is with high W/B ratio or exposed to high concentration of sulfate solution, the content of ettringite first increases and then decreases with corrosion time. However, the content of gypsum increases at a steady rate. The content of corrosion products does not correspond well with the observations of RDME change, and extensive amount of corrosion products can be formed before obvious damage occurs.
基金Project(2007AA03Z425) supported by the National Hi-tech Research and Development Program of ChinaProject(50404011) supported by the National Natural Science Foundation of China
文摘Niobium(V) ethoxide(Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode,stainless steel as the cathode and tetraethylammonium chloride(TEAC) as the conductive additive.The condensates were isolated by vacuum distillation under 5 kPa.The product was characterized by Fourier transform infrared(FT-IR) spectra,Raman spectra and nuclear magnetic resonance(NMR) spectra.The results indicate that the product is niobium ethoxide.Thermal properties of niobium ethoxide were analysed by TG/DTG.Vapour pressure was calculated from the Langmuir equation and the enthalpy of vaporization was calculated from the vapour pressure-temperature data using the Clausius-Clapeyron equation.The concentrations of impurity metallic elements in the sample were detected by ICP-MS.It is shown that the purity can reach 99.997%.The volatility and purity of the niobium ethoxide ensure that it could be a good precursor for chemical vapor deposition and atomic layer deposition of niobium oxide layers.
基金This work was supported by the National Natural Science Foundation,project no.51704302was also supported by China Scholarship Council,no.201903170086.
文摘Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content.To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF-HFP))on Al/MnO_(2) nanothermite,the samples with different contents are prepared and characterized by SEM,TGDSC,XRD,and their ignition and combustion behavior are tested and recorded.The results show that P(VDF-HFP)as an energetic binder can combine the nanothermite components together,even exist in the gaps.The integrity of energetic materials has been improved.Thermal analysis shows that the addition of P(VDF-HFP)greatly changes the thermal reaction processes,and the exothermic peaks appear early,but the utilization of fuel and oxidizer is not efficient from the XRD results.Furthermore,the appropriate addition of P(VDF-HFP)can directly reduce the ignition energy threshold and increase the combustion time,which is necessary for the potential ignition charge application.The possible reasons for above phenomena are discussed and analyzed.This research provides a reference for improvement of thermitebased ignition charge formulation.
基金Projects(61376076,61274026,61377024)supported by the National Natural Science Foundation of ChinaProjects(12C0108,13C321)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2013FJ2011,2013FJ4232)supported by the Science and Technology Plan of Hunan Province,China
文摘Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.
文摘Diaspore (α-AlOOH) was heated at various temperatures from 300 to 1 000 ℃ for 2 h. The alteration of diaspore by thermal treatment was investigated by differential thermal analysis, thermogravimetric analysis and X-ray diffraction. The mechanism of thermal decomposition of diaspore was discussed according to the Coats-Redfern (equation.) It is found that after thermal treatment at 500 ℃, diaspore is transformed entirely to corundum ((α-Al2O3).) Combined with the mass loss ratio obtained from the thermogravimetric analysis data, the activation energies for the thermal treatment of diaspore are calculated as Ea=10.4 kJ/mol below 400 ℃ and Eb=47.5 kJ/mol above 400 ℃, respectively, which is directly related to the structural alteration of diaspore during the thermal treatment. The results indicate that the thermal decomposition of diaspore is conducted primarily by means of an interfacial reaction.
基金the National Natural Science Foundation of China(NSFC,Grants No.52176114 and 52111530091)Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘In this study,to better understand the reaction mechanism between inorganic salts and nitrocellulose,CaCO_(3) and Li_(2)CO_(3) were evaluated with respect to their effects on the thermal degradation of NC in nitrogen atmosphere using TG/DSC at three different heating rates(2,5,10 K/min).The numerical relationship between activation energy(E)and conversion rate was obtained by FWO and KAS method,and it was discovered that CaCO_(3) could improve the thermal stability of NC.Activation energy values were calculated by Kissinger method,and it was found that NC that contain Li2CO3had the highest activation energy while NC containing CaCO3had the lowest E value.By combining the thermal analysis data with Malek method,the most probable mechanism model of thermal degradation is obtained as Sesták-Berggren model,which expression is f(α)=α^(m)(1-α)^(n).As a result of this study,there are certain guiding principles that can be applied to the pyrolysis reaction model and to the actual production process of nitrocellulose.
基金Project supported by the National Institute of Technology,Rourkela,India
文摘The chemical,physical,thermal and texture properties of iron ores from different regions of Odisha and Chhattisgarh regions,India,have been investigated to understand the compositional variations of Fe,Al2O3,SiO2,S and P.They were analyzed for its susceptibility to meet the industrial requirements,for various iron manufacture techniques.Chemical analysis indicated that the majority of the iron ores is rich in hematite(>90wt%),poor in gangue(<4.09wt%SiO2and<3.8wt%Al2O3)and deleterious elements(P<0.065wt%and S<0.016wt%)in all these iron ores found to be low.XRD peaks reviled that the gangue is in the form of kaolinite and quartz,and same was observed in Fourier transform infrared(FTIR)spectroscopy in the range of914to1034cm–1.The iron ores were found to have excellent physical properties exemplify with tumbler index(82wt%–91wt%),abrasion index(1.27wt%–4.87wt%)and shatter index(0.87wt%–1.64wt%).FTIR and thermal analysis were performed to assimilate the analysis interpolations.It was found that these iron ores exhibit three endothermic reactions,which are dehydration below447K with mass loss of0.13wt%to1.7wt%,dehydroxylation at525–609K with mass loss of1.09wt%–4.49wt%and decomposition of aluminosilicates at597–850K with mass loss of0.13wt%–1.15wt%.From this study,we can conclude that due to its excellent physico-chemical characteristics,these iron ores are suitable for BF and DRI operations.
文摘In this study,the effect of influencing parameters on the stress distribution around a polygonal cutout within a laminated composite under uniform heat flux was analytically examined.The analytical method was developed based on the classical laminated plate theory and two-dimensional thermo-elastic method.A mapping function was employed to extend the solution of a perforated symmetric laminate with a circular cutout to the solution of polygonal cutouts.The effect of significant parameters such as the cutout angular position,bluntness and aspect ratio,the heat flux angle and the laminate stacking sequence in symmetric composite laminate containing triangular,square and pentagonal cutouts was studied.The Neumann boundary condition was used at the edges of the thermally insulated polygonal cutout.The laminate was made of graphite/epoxy(AS/3501) material with two different stacking sequences of [30/45]sand[30/0/-30]_(s).The analytical solutions were well validated against finite element results.
基金supported by the Natural Science Foundation of Shanxi Province(Grant No.202203021221120)The Open Fund of MCRI-Shannxi Laboratory of Energetic Materials(Grant No.204-J-2024-2622)。
文摘This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.
基金Projects(51475073,51605076,51875079)supported by the National Natural Science Foundation of ChinaProject(2017YFB1301701)supported by the National Key Research and Development Program of China
文摘The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is proposed using finite difference method,based on the partly homogenization hypothesis of material,to predict temperature field in the process of drilling unidirectional carbon fiber/epoxy(C/E)composites.According to the drilling feed motion,drilling process is divided into four stages to study the temperature distributing characteristics.The results show that the temperature distribution predicted by numerical study has a good agreement with the experimental results.The temperature increases with increasing the drilling depth,and the burn phenomena is observed due to the heat accumulation,especially at the drill exit.Due to the fiber orientation,an elliptical shape of the temperature field along the direction is found for both numerical and experimental studies of C/E composites drilling process.
文摘Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope(SEM), Energy Dispersive Spectroscopy(EDS) and Fourier Transform Infrared Spectroscopy(FTIR) methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, Cu Co-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of Cu Co-I nano-catalyst.
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2010G018-A-3)supported by Technology Research and Development Program of the Ministry of Railways,China
文摘Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.
文摘A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.
基金Project(2011AA061003)supported by the National High Technology Research and Development Program of China
文摘The recovery of iron from iron sinking slag and lead smelter slag was investigated by desulfurization-reduction bath smelting. The effects of lead smelter slag(LSS) to iron sinking slag(ISS) mass ratio and temperature were investigated in desulfurization experiments. The X-ray diffraction(XRD) and X-ray fluorescence(XRF) analyses show that the optimum conditions are LSS:ISS of 3:7 and temperature of 1350°C. The composition of desulfurization products is mainly Zn Fe2O4, and the desulfurization rate of 99.66% is obtained under optimum conditions. The thermogravimetric(TG) and differential scanning calorimeter(DSC) analyses demonstrate that reductant is necessary for decomposition and reduction of zinc ferrite in desulfurization product. The effects of reductant, temperature and feeding modes on iron enrichment were investigated in reduction experiments. The scanning electron microscope(SEM) and energy dispersive spectrometer(EDS) determination show that the iron content of reduction product is up to 99.36% under optimum conditions of coke as reductant, reduction temperature of 1450°C and the feeding mode of premixing.
基金Project(70004782) supported by the Regional Strategic Technology Development Program of the Ministry of Knowledge Economy(MKE) of KoreaProject(2011-0017407) supported by the National Research Foundation of Korea (NRF) Funded by the Korea Government (MEST)
文摘The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was proposed using a commercial analysis program, ANSYS Workbench 12, by analyzing the static-thermal characteristics of the developed high-accuracy tilting index table at its design stage. The results of the performed structural analysis show that the maximum stress is generated at the stock tail part. An optimum design for the stock tail part was carried out to reduce the maximum stress and deformation. Also, the design variables were determined by considering the support of the stock tail part for the C-axis body. In the comparison of the results before and after the optimization, the maximum deformation and stress are improved by 2.8% and 8%, respectively.