期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
UNIFORMLY STARLIKE MAPPINGS AND UNIFORMLY CONVEX MAPPINGS ON THE UNIT BALL B^n 被引量:4
1
作者 冯淑霞 刘太顺 《Acta Mathematica Scientia》 SCIE CSCD 2014年第2期435-443,共9页
In this article, we extend the definition of uniformly starlike functions and uni- formly convex functions on the unit disk to the unit ball in C^n, give the discriminant criterions for them, and get some inequalities... In this article, we extend the definition of uniformly starlike functions and uni- formly convex functions on the unit disk to the unit ball in C^n, give the discriminant criterions for them, and get some inequalities for them. 展开更多
关键词 Uniformly starlike mappings uniformly convex mappings the unit ball
在线阅读 下载PDF
GLOBAL RIGIDITY THEOREMS FOR SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE
2
作者 潘鹏飞 许洪伟 赵恩涛 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期169-183,共15页
In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit posit... In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit positive constant C(n,p,λ),depending only on n,p,λ,such that,if∫MSn/2dM<∞,∫M(S−λ)n/2+dM<C(n,p,λ),then Mn is a totally geodetic sphere,where S denotes the square of the second fundamental form of the submanifold and∫+=max{0,f}.Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space Rn+p. 展开更多
关键词 Euclidean space the unit sphere submanifolds with parallel mean curvature global rigidity theorem
在线阅读 下载PDF
EXTREME POINTS AND SUPPORT POINTS OF A CLASS OF ANALYTIC FUNCTIONS 被引量:2
3
作者 彭志刚 刘伦刚 《Acta Mathematica Scientia》 SCIE CSCD 2000年第1期131-136,共6页
Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infini... Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infinity) b(n)a(n) less than or equal to 1 and Sigma(n=2)(+infinity) c(n)a(n) less than or equal to 1}. This article obtains the extreme points and support points of F({b(n)}, {c(n)}). 展开更多
关键词 topology of uniform convergence compact subsets of the unit disk extreme point support point
在线阅读 下载PDF
ANALYTIC PHASE RETRIEVAL BASED ON INTENSITY MEASUREMENTS
4
作者 Wei QU Tao QIAN +2 位作者 Guantie DENG Youfa LI Chunxu ZHOU 《Acta Mathematica Scientia》 SCIE CSCD 2021年第6期2123-2135,共13页
This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)i... This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|. 展开更多
关键词 phase retrieval Hardy space of the unit disc Szegökernel Takenaka-Malmquist system Gram-Schmidt orthogonalization adaptive Fourier decomposition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部