In this article, we extend the definition of uniformly starlike functions and uni- formly convex functions on the unit disk to the unit ball in C^n, give the discriminant criterions for them, and get some inequalities...In this article, we extend the definition of uniformly starlike functions and uni- formly convex functions on the unit disk to the unit ball in C^n, give the discriminant criterions for them, and get some inequalities for them.展开更多
In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit posit...In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit positive constant C(n,p,λ),depending only on n,p,λ,such that,if∫MSn/2dM<∞,∫M(S−λ)n/2+dM<C(n,p,λ),then Mn is a totally geodetic sphere,where S denotes the square of the second fundamental form of the submanifold and∫+=max{0,f}.Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space Rn+p.展开更多
Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infini...Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infinity) b(n)a(n) less than or equal to 1 and Sigma(n=2)(+infinity) c(n)a(n) less than or equal to 1}. This article obtains the extreme points and support points of F({b(n)}, {c(n)}).展开更多
This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)i...This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.展开更多
基金supported by the NNSF of China(11001074,11061015,11101124)the Foundation for University Young Key Teacher of Henan Province
文摘In this article, we extend the definition of uniformly starlike functions and uni- formly convex functions on the unit disk to the unit ball in C^n, give the discriminant criterions for them, and get some inequalities for them.
基金supported by the National Natural Science Foundation of China(11531012,12071424,12171423)the Scientific Research Project of Shaoxing University(2021LG016)。
文摘In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit positive constant C(n,p,λ),depending only on n,p,λ,such that,if∫MSn/2dM<∞,∫M(S−λ)n/2+dM<C(n,p,λ),then Mn is a totally geodetic sphere,where S denotes the square of the second fundamental form of the submanifold and∫+=max{0,f}.Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space Rn+p.
文摘Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infinity) b(n)a(n) less than or equal to 1 and Sigma(n=2)(+infinity) c(n)a(n) less than or equal to 1}. This article obtains the extreme points and support points of F({b(n)}, {c(n)}).
基金The Science and Technology Development Fund,Macao SAR(File no.0123/2018/A3)supported by the Natural Science Foundation of China(61961003,61561006,11501132)+2 种基金Natural Science Foundation of Guangxi(2016GXNSFAA380049)the talent project of the Education Department of the Guangxi Government for one thousand Young-Middle-Aged backbone teachersthe Natural Science Foundation of China(12071035)。
文摘This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.