In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique...The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.展开更多
As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the ...As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.展开更多
This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of...This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.展开更多
An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear tim...An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear time-varying system by using shifted Legendre polynomials approximation. Then, an approximated model for the linear time-varying system is deduced by employing the orthogonality relations and boundary values of shifted Legendre polynomials. Based on the model, the shifted Legendre polynomials coefficients of control function are iteratively adjusted by an optimal iterative learning law derived. The algorithm presented can avoid solving the state transfer matrix of linear time-varying systems. Simulation results illustrate the effectiveness of the proposed method.展开更多
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed f...This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet...Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.展开更多
The suboptimal control program via memoryless state feedback strategies for LQ differential games with multiple players is studied in this paper. Sufficient conditions for the existence of the suboptimal strategies fo...The suboptimal control program via memoryless state feedback strategies for LQ differential games with multiple players is studied in this paper. Sufficient conditions for the existence of the suboptimal strategies for LQ differential games are presented. It is shown that the suboptimal strategies of LQ differential games are associated with a coupled algebraic Riccati inequality. Furthermore, the problem of designing suboptimal strategies is considered. A non-convex optimization problem with BMI constrains is formulated to design the suboptimal strategies which minimizes the performance indices of the closed-loop LQ differential games and can be solved by using LMI Toolbox of MATLAB. An example is given to illustrate the proposed results.展开更多
这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用...这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。展开更多
In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and suf...In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.展开更多
Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and give...Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and gives more freedom in designing controllers in order to achieve some desired performance.With the aid of Lyapunov stability theorem and partial stability theory,two cases were presented:1) Chaos synchronization of the system without perturbation or with vanishing perturbations;2) The boundness of the error state for the system with nonvanishing perturbations satisfying some conditions.Finally,several simulations for Lorenz system were provided to verify the effectiveness and feasibility of our method.Compared numerically with the existing results of linear feedback control scheme,the results are sharper than the existing ones.展开更多
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ...It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.展开更多
New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. Th...New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. The central processing unit chooses an object at each discrete instant according to periodic switching strategy and controls it by local state feedback. Stabilization of a multiple-input system is turned into stabilization of single-input systems under periodic switching strategy, which is easy to be realized in practice. On the other hand, only one central processing unit can realize all local controllers, which decreases the cost and increases the usage of the resources.展开更多
The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation o...The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.展开更多
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
文摘The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.
基金Supported by National Natural Science Foundation of P. R. China (60174040)
文摘As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.
基金This work was supported by the National Natural Science Foundation of China(62003131,62073121,62173125)the Natural Science Foundation of Jiangsu Province(BK20200520).
文摘This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.
基金Supported by National Natural Science Foundation of P. R. China (60474049)
文摘An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear time-varying system by using shifted Legendre polynomials approximation. Then, an approximated model for the linear time-varying system is deduced by employing the orthogonality relations and boundary values of shifted Legendre polynomials. Based on the model, the shifted Legendre polynomials coefficients of control function are iteratively adjusted by an optimal iterative learning law derived. The algorithm presented can avoid solving the state transfer matrix of linear time-varying systems. Simulation results illustrate the effectiveness of the proposed method.
基金National Natural Science Foundation of China (60674036, 60974003), the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (2007BS01010)
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金This project was supported by the National Natural Science Foundation of China (No. 69974022).
文摘This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
基金Supported by National Natural Science Foundation of P. R. China (60404003)the Natural Science Foundation of Hunan Province (03JJY3108)Fok Ying-Tong Education Foundation (94028)
文摘Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.
基金Supported by National Natural Science Foundation of P. R. China (10272001, 60334030, and 60474029)
文摘The suboptimal control program via memoryless state feedback strategies for LQ differential games with multiple players is studied in this paper. Sufficient conditions for the existence of the suboptimal strategies for LQ differential games are presented. It is shown that the suboptimal strategies of LQ differential games are associated with a coupled algebraic Riccati inequality. Furthermore, the problem of designing suboptimal strategies is considered. A non-convex optimization problem with BMI constrains is formulated to design the suboptimal strategies which minimizes the performance indices of the closed-loop LQ differential games and can be solved by using LMI Toolbox of MATLAB. An example is given to illustrate the proposed results.
基金Supported by National 'Natural Science Foundation of China (60374027), Program for New Century Excellent Talents in University (2004)
文摘这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。
文摘In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.
基金Projects(61075065,60774045,U1134108) supported by the National Natural Science Foundation of ChinaProject(20110162110041) supported by the Ph.D Programs Foundation of Ministry of Education of ChinaProject(CX2011B086) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and gives more freedom in designing controllers in order to achieve some desired performance.With the aid of Lyapunov stability theorem and partial stability theory,two cases were presented:1) Chaos synchronization of the system without perturbation or with vanishing perturbations;2) The boundness of the error state for the system with nonvanishing perturbations satisfying some conditions.Finally,several simulations for Lorenz system were provided to verify the effectiveness and feasibility of our method.Compared numerically with the existing results of linear feedback control scheme,the results are sharper than the existing ones.
基金Project(9140A05030109HK01)supported by Equipment Pre-research Foundation,China
文摘It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.
基金Supported by National Natural Science Foundation of P. R. China (60274009 and 69934010)Specialized Research Fund for the Doctoral Program of Higher Education (20020145007)Doctoral Foundation of P. R. China (2003033500)Technological Foundation of Southeast University (9802001472)
文摘New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. The central processing unit chooses an object at each discrete instant according to periodic switching strategy and controls it by local state feedback. Stabilization of a multiple-input system is turned into stabilization of single-input systems under periodic switching strategy, which is easy to be realized in practice. On the other hand, only one central processing unit can realize all local controllers, which decreases the cost and increases the usage of the resources.
基金National Natural Science Foundation of P. R. China (50477042)Ph. D. Programs Foundation of Ministry of Education of P.R.China (20040422052)the Natural Science Foundation of Shandong Province (Z2004G04)
基金supported by the National Natural Science Foundation of China(51679201)
文摘The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.