The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introdu...A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three_dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability) problem, it is found that there exist two independent classes: One corresponds to the pure in_plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of some parameters are discussed.展开更多
Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electri...Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electric loadings. A four-node rectangular composite element with an additional voltage freedom per piezoelectric layer is implemented for the analysis. The element can predict more accurately the bending response of the structure because of its new displacement radixes. Numerical examples ere performed and the calculated data compare very well with existing results in the literatures.展开更多
Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the ...Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments.展开更多
A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The elemen...A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.展开更多
This study analyzes the hydrodynamic performance of an H-shaped pile-restrained composite breakwater integrated with a pair of horizontal plates placed on the seaside and the leeside of the breakwater.The wave interac...This study analyzes the hydrodynamic performance of an H-shaped pile-restrained composite breakwater integrated with a pair of horizontal plates placed on the seaside and the leeside of the breakwater.The wave interaction with the H-shaped breakwater is examined by analyzing the wave reflection,transmission,and dissipation coefficients.Additionally,the horizontal wave force coefficients are evaluated to analyze the effectiveness of the horizontal plates when integrated with the main structure.The primary structural parameters directly affect the performance of the composite breakwater and are varied within the feasible range of nondimensional wave numbers,relative spacings,and incident wave angles.This study presents a comparative analysis of the arrangement of the horizontal plates in terms of spacing and inclinations inward and outward to the breakwater using a multidomain boundary element method(BEM).The variation of the structural parameters proposes suitable dimensions for integrated H-shaped breakwater with horizontal plates that provide optimal performance in shallow and deep-water regions.The optimum plate porosity,dimensions of the H-shaped structure,inclinations,and spacing between the plate and breakwater are thoroughly discussed.This study shows that impermeable plates are the excellent means to control the wave force in the intermediate water depth regions than in deep-water regions at resisting wave force.The wave force coefficient on the breakwater is significantly larger than that on the seaside plates.Interestingly,inward-inclined plates perform most efficiently at angles greater than 5°,except in deep-water regions where horizontal plates perform better.In addition,this study noted that regardless of water depth,the outward-inclined plates are the least effective in reflecting the incident wave energy.This study will help plan the layout of suitable composite structures for efficient near-shore and offshore harbor protection according to the site criteria and environmental conditions.展开更多
Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we ...Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we bonded steel plates onto bridge corbels to strengthen them. We carried out a numerical analysis on the effectiveness of the reinforcement by using the commercial sof^are ANSYS. The numerical analysis shows that the stresses near the section break increased slightly, but the variation amplitude was small and all the stresses were within an allowable range. The loading test indicates that it is feasible to strengthen the corbel with vertical bonded steel plates. Therefore, the reinforcement is effective and economical. This reinforcement method is suitable for this type of corbel and can be applied in similar cases.展开更多
In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof ...In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof is based on the method of regularized Green's function and 'the trick of auxiliary element'.展开更多
On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these meth...On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.展开更多
It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper...It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.展开更多
An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the bucklin...An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the buckling load of laminated composite plates(LCPs)under uniaxial and biaxial compressions.In this method,a novel iterative adaptive Kriging model,which is structured using two training sample sets as active and adaptive points,is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process.The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples.The cell-based smoothed discrete shear gap method(CS-DSG3)is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets.The buckling load of the LCPs is maximized by utilizing the IPSO algorithm.To demonstrate the efficiency and accuracy of the proposed methodology,the LCPs with different layers(2,3,4,and 10 layers),boundary conditions,aspect ratios and load patterns(biaxial and uniaxial loads)are investigated.The results obtained by proposed method are in good agreement with the literature results,but with less computational burden.By applying adaptive radial Kriging model,the accurate optimal resultsebased predictions of the buckling load are obtained for the studied LCPs.展开更多
The aim of this paper is to develop computational models for the ultimate compressive strength analysis of stiffened plate panels with nonuniform thickness.Modeling welding-induced initial deformations and residual st...The aim of this paper is to develop computational models for the ultimate compressive strength analysis of stiffened plate panels with nonuniform thickness.Modeling welding-induced initial deformations and residual stresses was presented with the measured data.Three methods,i.e.,ANSYS finite element method,ALPS/SPINE incremental Galerkin method,and ALPS/ULSAP analytical method,were employed together with existing test database obtained from a full-scale collapse testing of steel-stiffened plate structures.Sensitivity study was conducted with varying the difference in plate thickness to define a representative(equivalent)thickness for plate panels with nonuniform thickness.Guidelines are provided for structural modeling to compute the ultimate compressive strength of plate panels with variable thickness.展开更多
We propose an efficient method of generating a vortex beam with multi-foci by using a fractal spiral zone plate(FSZP), which is designed by combining fractal structure with a spiral zone plate(SZP) in the squared radi...We propose an efficient method of generating a vortex beam with multi-foci by using a fractal spiral zone plate(FSZP), which is designed by combining fractal structure with a spiral zone plate(SZP) in the squared radial coordinate.The theoretical analysis reveals that the number of foci that embed vortices is significantly increased as compared with that obtained by using a conventional SZP. Furthermore, the influence of topological charge on the intensity distribution in focal plane is also discussed in detail. For experimental investigation, an FSZP with topological charge p = 1 and 6.4 mm diameter is fabricated by using a photo-etching technique. The calibration indicates that the focusing performances of such a kind of zone plane(ZP) accord well with simulations, thereby providing its potential applications in multi-dimensional optical manipulation and optical imaging technology.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering.At present, according to the rules of classification societies, a mixture ...Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering.At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS.Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed.In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness.Displacement and stress response related to bending stiffness was calculated with the laminated shell element.Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language.Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress.Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation.The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods.So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.展开更多
The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simpl...The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).展开更多
The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of t...The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor.The purpose of this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets.The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor.The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down.In this present paper,we present a conceptual design approach for fuel element plate,in conjunction with a genetic algorithm to obtain a fuel plate that maximizes a fitness value to optimize the safety design of the fuel plate.展开更多
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
文摘A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three_dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability) problem, it is found that there exist two independent classes: One corresponds to the pure in_plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of some parameters are discussed.
基金Supported by the National Natural Science Foundation of China (No.10072026)
文摘Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electric loadings. A four-node rectangular composite element with an additional voltage freedom per piezoelectric layer is implemented for the analysis. The element can predict more accurately the bending response of the structure because of its new displacement radixes. Numerical examples ere performed and the calculated data compare very well with existing results in the literatures.
基金Supprorted by the Science and Technology Foundation of Jiangsu Construction Committee(JS200214)the Science Research Foundation of Nanjing Institute of Technology(KXJ08122)~~
文摘Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments.
文摘A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.
基金the partial support from the Ministry of Ports,Shipping and Waterways,Government of India,through the research grant no.DW/01013(13)/2/2021.
文摘This study analyzes the hydrodynamic performance of an H-shaped pile-restrained composite breakwater integrated with a pair of horizontal plates placed on the seaside and the leeside of the breakwater.The wave interaction with the H-shaped breakwater is examined by analyzing the wave reflection,transmission,and dissipation coefficients.Additionally,the horizontal wave force coefficients are evaluated to analyze the effectiveness of the horizontal plates when integrated with the main structure.The primary structural parameters directly affect the performance of the composite breakwater and are varied within the feasible range of nondimensional wave numbers,relative spacings,and incident wave angles.This study presents a comparative analysis of the arrangement of the horizontal plates in terms of spacing and inclinations inward and outward to the breakwater using a multidomain boundary element method(BEM).The variation of the structural parameters proposes suitable dimensions for integrated H-shaped breakwater with horizontal plates that provide optimal performance in shallow and deep-water regions.The optimum plate porosity,dimensions of the H-shaped structure,inclinations,and spacing between the plate and breakwater are thoroughly discussed.This study shows that impermeable plates are the excellent means to control the wave force in the intermediate water depth regions than in deep-water regions at resisting wave force.The wave force coefficient on the breakwater is significantly larger than that on the seaside plates.Interestingly,inward-inclined plates perform most efficiently at angles greater than 5°,except in deep-water regions where horizontal plates perform better.In addition,this study noted that regardless of water depth,the outward-inclined plates are the least effective in reflecting the incident wave energy.This study will help plan the layout of suitable composite structures for efficient near-shore and offshore harbor protection according to the site criteria and environmental conditions.
文摘Corbels support the crossbeams of half-through arch bridges. They are prone to cracking easily due to their characteristics and complicated loading conditions. Based on a practical diagnosis of a bridge crossbeam, we bonded steel plates onto bridge corbels to strengthen them. We carried out a numerical analysis on the effectiveness of the reinforcement by using the commercial sof^are ANSYS. The numerical analysis shows that the stresses near the section break increased slightly, but the variation amplitude was small and all the stresses were within an allowable range. The loading test indicates that it is feasible to strengthen the corbel with vertical bonded steel plates. Therefore, the reinforcement is effective and economical. This reinforcement method is suitable for this type of corbel and can be applied in similar cases.
文摘In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof is based on the method of regularized Green's function and 'the trick of auxiliary element'.
基金supported by NSFC(11571266,91430106,11171168,11071132)NSFC-RGC(China-Hong Kong)(11661161017)
文摘On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.
文摘It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.
文摘An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the buckling load of laminated composite plates(LCPs)under uniaxial and biaxial compressions.In this method,a novel iterative adaptive Kriging model,which is structured using two training sample sets as active and adaptive points,is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process.The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples.The cell-based smoothed discrete shear gap method(CS-DSG3)is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets.The buckling load of the LCPs is maximized by utilizing the IPSO algorithm.To demonstrate the efficiency and accuracy of the proposed methodology,the LCPs with different layers(2,3,4,and 10 layers),boundary conditions,aspect ratios and load patterns(biaxial and uniaxial loads)are investigated.The results obtained by proposed method are in good agreement with the literature results,but with less computational burden.By applying adaptive radial Kriging model,the accurate optimal resultsebased predictions of the buckling load are obtained for the studied LCPs.
文摘The aim of this paper is to develop computational models for the ultimate compressive strength analysis of stiffened plate panels with nonuniform thickness.Modeling welding-induced initial deformations and residual stresses was presented with the measured data.Three methods,i.e.,ANSYS finite element method,ALPS/SPINE incremental Galerkin method,and ALPS/ULSAP analytical method,were employed together with existing test database obtained from a full-scale collapse testing of steel-stiffened plate structures.Sensitivity study was conducted with varying the difference in plate thickness to define a representative(equivalent)thickness for plate panels with nonuniform thickness.Guidelines are provided for structural modeling to compute the ultimate compressive strength of plate panels with variable thickness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404290 and 61505178)the Major National Scientific Instruments Developing Special Project(Grant No.2012YQ130125)+2 种基金the Postdoctoral Science Foundation of Henan Province,China(Grant No.2013008)the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.172102210481)the Key Scientific Research Projects in Universities of Henan Province,China(Grant No.19B140005)
文摘We propose an efficient method of generating a vortex beam with multi-foci by using a fractal spiral zone plate(FSZP), which is designed by combining fractal structure with a spiral zone plate(SZP) in the squared radial coordinate.The theoretical analysis reveals that the number of foci that embed vortices is significantly increased as compared with that obtained by using a conventional SZP. Furthermore, the influence of topological charge on the intensity distribution in focal plane is also discussed in detail. For experimental investigation, an FSZP with topological charge p = 1 and 6.4 mm diameter is fabricated by using a photo-etching technique. The calibration indicates that the focusing performances of such a kind of zone plane(ZP) accord well with simulations, thereby providing its potential applications in multi-dimensional optical manipulation and optical imaging technology.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.HEUCFR 1003
文摘Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering.At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS.Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed.In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness.Displacement and stress response related to bending stiffness was calculated with the laminated shell element.Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language.Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress.Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation.The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods.So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .5 96 780 39) .
文摘The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).
文摘The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor.The purpose of this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets.The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor.The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down.In this present paper,we present a conceptual design approach for fuel element plate,in conjunction with a genetic algorithm to obtain a fuel plate that maximizes a fitness value to optimize the safety design of the fuel plate.