A set of ENE\|trending fault which locates in the rigid Tarim massif and flexible Qilian massif in the same dynamic system of the uplift of the Qinghai—Tibetan plateau is referred to as the Altun Fault (ALF). ALF dis...A set of ENE\|trending fault which locates in the rigid Tarim massif and flexible Qilian massif in the same dynamic system of the uplift of the Qinghai—Tibetan plateau is referred to as the Altun Fault (ALF). ALF displays a linear geometry or a geometry of overlapping of linear and arcuate segments and a growth and development process of the breakdown segment\|by\|segment, connection segment\|by\|segment and propagation gradually (northeastward migration of the northeast tip, southwestward growth of the southwest tip). The formation of the Altun fault began in the middle or upper Carboniferous. It was characteristic of the sinistral strike\|slip\|thrust before Eocene, of the thrust\|sinistral strike\|slip during Oligocene—Miocene, and of the normal slip, and thrust\|sinistral strike\|slip simultaneously since Miocene.展开更多
In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructu...In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 μm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample (0.061%) is significantly higher than that of the bulk material (0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 μm/s.展开更多
The solid state transformer(SST) can be viewed as an energy router in energy internet. This work presents sliding mode control(SMC) to improve dynamic state and steady state performance of a three-stage(rectifier stag...The solid state transformer(SST) can be viewed as an energy router in energy internet. This work presents sliding mode control(SMC) to improve dynamic state and steady state performance of a three-stage(rectifier stage, isolated stage and inverter stage) SST for energy internet. SMC with three-level hysteresis sliding functions is presented to control the input current of rectifier stage and output voltage of inverter stage to improve the robustness under external disturbance and parametric uncertainties and reduce the switching frequency. A modified feedback linearization technique using isolated stage simplified model is presented to achieve satisfactory regulation of output voltage of the isolated stage. The system is tested for steady state operation, reactive power control, dynamic load change and voltage sag simulations, respectively. The switching model of SST is implemented in Matlab/ Simulink to verify the SST control algorithms.展开更多
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s...Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.展开更多
According to the characteristic that Hilbert-Huang transform (HHT) can detect abnormity in signals, an HHT-based method to eliminate short-time strong disturbance was proposed. The signal with short-time strong dist...According to the characteristic that Hilbert-Huang transform (HHT) can detect abnormity in signals, an HHT-based method to eliminate short-time strong disturbance was proposed. The signal with short-time strong disturbance was decomposed into a series of intrinsic mode functions (IMFs) and a residue by the empirical mode decomposition (EMD). The instantaneous amplitudes and frequencies of each IMF were calculated. And at abnormal section, instantaneous amplitudes and frequencies were fired according to the data at normal section, replacing the fitted data for the original ones. A new set of IMFs was reconstructed by using the processed instantaneous amplitudes and frequencies. For the residue, abnormal fluctuations could be directly eliminated. And a new signal with the short-time strong disturbance eliminated was reconstructed by superposing all the new IMFs and the residue, The numerical simulation shows that there is a good correlation between the reconstructed signal and the undisturbed signal, The correlation coefficient is equal to 0.999 1. The processing results of the measured strain signal of a bridge with short-time strong disturbance verify the practicability of the method.展开更多
文摘A set of ENE\|trending fault which locates in the rigid Tarim massif and flexible Qilian massif in the same dynamic system of the uplift of the Qinghai—Tibetan plateau is referred to as the Altun Fault (ALF). ALF displays a linear geometry or a geometry of overlapping of linear and arcuate segments and a growth and development process of the breakdown segment\|by\|segment, connection segment\|by\|segment and propagation gradually (northeastward migration of the northeast tip, southwestward growth of the southwest tip). The formation of the Altun fault began in the middle or upper Carboniferous. It was characteristic of the sinistral strike\|slip\|thrust before Eocene, of the thrust\|sinistral strike\|slip during Oligocene—Miocene, and of the normal slip, and thrust\|sinistral strike\|slip simultaneously since Miocene.
基金Project(16PJ1430200)supported by Shanghai Pujiang Program,China
文摘In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 μm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample (0.061%) is significantly higher than that of the bulk material (0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 μm/s.
基金Projects(61403404,71571187)supported by the National Natural Science Foundation of China
文摘The solid state transformer(SST) can be viewed as an energy router in energy internet. This work presents sliding mode control(SMC) to improve dynamic state and steady state performance of a three-stage(rectifier stage, isolated stage and inverter stage) SST for energy internet. SMC with three-level hysteresis sliding functions is presented to control the input current of rectifier stage and output voltage of inverter stage to improve the robustness under external disturbance and parametric uncertainties and reduce the switching frequency. A modified feedback linearization technique using isolated stage simplified model is presented to achieve satisfactory regulation of output voltage of the isolated stage. The system is tested for steady state operation, reactive power control, dynamic load change and voltage sag simulations, respectively. The switching model of SST is implemented in Matlab/ Simulink to verify the SST control algorithms.
基金Project(51576213)supported by the National Natural Science Foundation of ChinaProject(2015RS4015)supported by the Hunan Scientific Program,ChinaProject(2016zzts323)supported by the Innovation Project of Central South University,China
文摘Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.
基金Project (50675230) supported by the National Natural Science Foundation of China
文摘According to the characteristic that Hilbert-Huang transform (HHT) can detect abnormity in signals, an HHT-based method to eliminate short-time strong disturbance was proposed. The signal with short-time strong disturbance was decomposed into a series of intrinsic mode functions (IMFs) and a residue by the empirical mode decomposition (EMD). The instantaneous amplitudes and frequencies of each IMF were calculated. And at abnormal section, instantaneous amplitudes and frequencies were fired according to the data at normal section, replacing the fitted data for the original ones. A new set of IMFs was reconstructed by using the processed instantaneous amplitudes and frequencies. For the residue, abnormal fluctuations could be directly eliminated. And a new signal with the short-time strong disturbance eliminated was reconstructed by superposing all the new IMFs and the residue, The numerical simulation shows that there is a good correlation between the reconstructed signal and the undisturbed signal, The correlation coefficient is equal to 0.999 1. The processing results of the measured strain signal of a bridge with short-time strong disturbance verify the practicability of the method.