期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于自适应最优组合核函数高斯过程回归的锂电池健康状态区间估计 被引量:4
1
作者 刘迎迎 张孝远 +2 位作者 刘梦楠 孙俊章 张艳 《储能科学与技术》 北大核心 2025年第1期346-357,共12页
锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定... 锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定性,近年来在锂电池SOH区间估计中得到广泛应用。然而,GPR的性能很大程度上取决于其核函数的选择,当前研究多凭借经验选用固定单一核函数,无法适应不同的数据集。为此,本文提出一种基于自适应最优组合核函数GPR的锂电池SOH区间估计方法。该方法首先从电池充放电数据中提取出多个健康因子(health factor, HF),并采用皮尔森相关系数法优选出6个与SOH高度相关的健康因子作为模型的输入。然后,在当前常用的7个核函数集合上,通过两两随机组合构造新的组合核函数,并利用交叉验证自适应优选出最优组合核函数。采用3个不同数据集对所提方法进行了验证,结果表明:本文方法具有出色的SOH区间估计性能。在3个公开数据集上,平均区间宽度指标在0.0509以内,平均区间分数大于-0.0004,均方根误差小于0.0181。 展开更多
关键词 锂电池 健康状态 高斯过程回归 区间估计 组合核函数
在线阅读 下载PDF
基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力模型 被引量:1
2
作者 李启明 张鹏飞 +1 位作者 喻泽成 余波 《工程科学与技术》 北大核心 2025年第1期287-295,共9页
针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型。首先,基于核函数相加性和自动相关性,构造出一种新... 针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型。首先,基于核函数相加性和自动相关性,构造出一种新型的各向异性混合核函数;然后,结合高斯过程回归原理和各向异性混合核函数,建立了RC柱的概率抗剪承载力模型;进而采用极大似然估计法,确定了RC柱概率抗剪承载力模型的超参数;最后,基于91组剪切破坏RC柱的试验数据,通过与传统核函数形式和传统模型进行对比分析,验证了该模型的有效性。结果表明:与传统核函数相比,各向异性混合核函数的确定性预测指标均方根误差R_(MSE)和平均绝对误差M_(AE)分别降低约16%和19%,概率性预测值指标负对数预测密度N_(LPD)和平均标准化对数损失M_(SLL)分别降低约15%和23%;与传统机器学习模型相比,本文模型的均方根误差R_(MSE)和平均绝对误差M_(AE)分别降低约38%和39%;根据所提出的概率模型能够建立概率密度函数曲线和置信区间,从而合理描述抗剪承载力的不确定性并校准分析传统模型的预测精度。 展开更多
关键词 钢筋混凝土柱 各向异性混合核函数 高斯过程回归 概率抗剪承载力模型 不确定性
在线阅读 下载PDF
一类不确定非线性系统安全学习控制
3
作者 刘跃跃 王浩羽 +1 位作者 吴小雨 樊启高 《控制理论与应用》 北大核心 2025年第7期1323-1332,共10页
针对非线性系统非参数不确定条件下的安全控制问题,本文提出一种基于高斯过程(GP)的安全学习控制方案.首先,基于在线采集到的历史数据,利用高斯过程回归对非线性系统中的非参不确定性与时变扰动进行学习,基于Lyapunov理论设计反馈线性... 针对非线性系统非参数不确定条件下的安全控制问题,本文提出一种基于高斯过程(GP)的安全学习控制方案.首先,基于在线采集到的历史数据,利用高斯过程回归对非线性系统中的非参不确定性与时变扰动进行学习,基于Lyapunov理论设计反馈线性化控制策略,保证控制器全局一致最终有界(GUUB).其次,考虑到安全约束问题,在反馈控制器的基础上,利用控制障碍函数(CBF),最小限度调整控制输入获得基于二次规划(QP)的优化控制输入.此外,分别在高概率意义上证明了闭环系统的有界性和状态安全域的前向不变性.通过仿真结果,验证了所提控制策略在非参数不确定性下轨迹跟踪与避障约束中的有效性. 展开更多
关键词 高斯过程 反馈线性化 控制障碍函数 安全控制 二次规划优化
在线阅读 下载PDF
基于小波分析和Gaussian回归的急性低血压预测
4
作者 孙浩军 张崇锐 +1 位作者 张磊 李惊涛 《计算机工程与科学》 CSCD 北大核心 2016年第1期156-162,共7页
急性低血压是危害病人健康的并发症之一,对急性低血压发生的提早预测,能够帮助医生对重症病人找到更好的医疗处理方案。提出了一个基于趋势分量的Gaussian函数拟合预测模型,即用小波多尺度分析提取出信号的趋势分量;再根据Gaussian回归... 急性低血压是危害病人健康的并发症之一,对急性低血压发生的提早预测,能够帮助医生对重症病人找到更好的医疗处理方案。提出了一个基于趋势分量的Gaussian函数拟合预测模型,即用小波多尺度分析提取出信号的趋势分量;再根据Gaussian回归模型对趋势分量进行函数拟合,得到的函数参数作为特征值,用支持向量机SVM对数据分类。Gaussian回归模型使用的是数据驱动,用系数来描述数据之间的关系。通过在较大病人数据集上实验得到了较好的效果。 展开更多
关键词 小波多尺度分析 gaussian回归过程 函数拟合 数据驱动
在线阅读 下载PDF
基于高斯过程回归的岩石抗剪强度参数不确定性估测 被引量:1
5
作者 张化进 吴顺川 +1 位作者 李兵磊 赵宇松 《岩土力学》 EI CAS CSCD 北大核心 2024年第S01期415-423,共9页
为克服以往岩石抗剪强度参数估测方法无法反映并量化其不确定性的问题,提出一种基于高斯过程回归(Gaussian processregression,GPR)的岩石抗剪强度参数不确定性估测方法,实现具有概率意义的不确定性分析。基于岩石强度参数数据集,利用... 为克服以往岩石抗剪强度参数估测方法无法反映并量化其不确定性的问题,提出一种基于高斯过程回归(Gaussian processregression,GPR)的岩石抗剪强度参数不确定性估测方法,实现具有概率意义的不确定性分析。基于岩石强度参数数据集,利用高斯过程理论建立不同核函数下岩石单轴抗压强度(uniaxial compressive strength,UCS)和抗拉强度(uniaxial tensilestrength,UTS)与抗剪强度参数的映射关系。通过最大化对数边缘似然函数优化GPR模型超参数,然后根据预测效果与不确定性程度,确定合适的核函数及其GPR模型。结果表明,在给定UCS和UTS数据下,建议采用Matérn核函数构建黏聚力GPR模型,采用有理二次核函数构建内摩擦角GPR模型。对比传统机器学习方法,GPR方法不仅可准确地预测岩石抗剪强度参数,还给出了预测结果的不确定性程度,具有较强的科学性和可解释性,证明了GPR模型的可行性与有效性。 展开更多
关键词 岩石 抗剪强度参数 高斯过程回归 不确定性分析 核函数
在线阅读 下载PDF
基于多核高斯过程回归的地铁车辆继电器寿命预测 被引量:1
6
作者 李欣 刘志强 魏秀琨 《中国铁路》 北大核心 2024年第10期114-121,共8页
电磁继电器是地铁车辆自动控制系统的重要组成部分,应用十分广泛,一旦继电器出现故障,可能会造成车辆掉线、临修等重大延误问题。提出一种基于多核高斯过程回归的地铁车辆继电器寿命预测模型,采用Pearson相关性分析继电器特征参数,利用... 电磁继电器是地铁车辆自动控制系统的重要组成部分,应用十分广泛,一旦继电器出现故障,可能会造成车辆掉线、临修等重大延误问题。提出一种基于多核高斯过程回归的地铁车辆继电器寿命预测模型,采用Pearson相关性分析继电器特征参数,利用高斯核与自适应高斯核函数建模协方差、三次多项式建模基函数,将继电器剩余寿命建模为高斯分布,模型输出继电器剩余寿命的点估计及方差,计算得到继电器剩余寿命的概率密度函数与累积分布函数,求解出继电器剩余寿命的区间估计及至少运行指定时间下的概率值;在搭建的继电器寿命预测试验台完成1组全寿命试验,并分析1组案例,证明了该模型算法的有效性。 展开更多
关键词 地铁车辆 电磁继电器 剩余寿命预测 多核高斯过程回归 核函数
在线阅读 下载PDF
基于核函数和超参数优化的退役锂电池健康状态估计 被引量:4
7
作者 李臣 张会林 张建平 《储能科学与技术》 CAS CSCD 北大核心 2024年第6期2010-2021,共12页
退役锂电池的健康状态(SOH)估计对于电池再利用和环境可持续性至关重要,考虑到电池退役前使用条件的不确定性,为进一步实现数据驱动方法对退役锂电池SOH的精确估计,本研究提出一种改进高斯过程回归(GPR)模型的SOH估计方法。首先,收集退... 退役锂电池的健康状态(SOH)估计对于电池再利用和环境可持续性至关重要,考虑到电池退役前使用条件的不确定性,为进一步实现数据驱动方法对退役锂电池SOH的精确估计,本研究提出一种改进高斯过程回归(GPR)模型的SOH估计方法。首先,收集退役锂电池的循环充放电数据,在考虑温度影响的同时,使用容量增量分析(ICA)和电化学阻抗谱(EIS)等方法,获取统计健康特征来表征退役锂电池的老化特性,并使用Pearson相关系数对所选统计特征进行相关性分析,筛选出与SOH相关性高的健康特征,消除特征冗余性。然后,基于单一核函数学习老化特征能力有限和传统超参数寻优方法效率不足的特点,将线性核函数和对角平方指数核函数结合,以更好地适应电池SOH估计任务中的多样性,同时,使用鲸鱼算法(WOA)对估计模型的超参数进行优化,以确保最佳拟合效果,建立改进的GPR估计模型以提高估计的精确性。最后,采用NASA电池数据集中具有不同初始健康状况的四个不同电池,来验证所提出方法的有效性,结果表明,本文所提方法可以提供准确的SOH估计,其中平均绝对误差均小于1.75%且均方根误差均小于2.42%。 展开更多
关键词 退役锂电池 健康状态 鲸鱼算法 核函数 高斯过程回归
在线阅读 下载PDF
无人自主系统能力边界参数自适应判别方法
8
作者 李锦文 王鹏 +1 位作者 潘优美 惠新遥 《系统仿真学报》 CAS CSCD 北大核心 2024年第10期2359-2370,共12页
为有效应对仿真测试面临的维度灾难问题,降低传统全参数空间遍历中所需的仿真次数,需要获取针对性的仿真数据以准确反映实验数据建模特征,以较少的仿真次数获得信息量丰富且代表原始数据特征的样本。提出一种面向无人自主系统能力边界... 为有效应对仿真测试面临的维度灾难问题,降低传统全参数空间遍历中所需的仿真次数,需要获取针对性的仿真数据以准确反映实验数据建模特征,以较少的仿真次数获得信息量丰富且代表原始数据特征的样本。提出一种面向无人自主系统能力边界参数自适应判别的数字化仿真测试模型,采用多权重结构的佳点集进行初始构建,结合自适应核函数边界点判别算法,通过高斯过程回归对模型进行迭代优化,自适应地判别无人自主系统的能力边界。实验结果表明:该方法能够降低建模所需数据量,提高自适应参数边界判别的效率,为提升智能无人系统试验的效率提供了高效途径。 展开更多
关键词 无人自主系统 边界参数自适应判别 高斯过程回归模型 自适应核函数 佳点集
在线阅读 下载PDF
基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测
9
作者 刘杰 《煤炭学报》 EI CAS CSCD 北大核心 2024年第S01期92-107,共16页
在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义。针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史... 在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义。针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测方法。这种方法通过高斯随机过程、核函数以及贝叶斯理论进行锚杆支护时间序列煤岩压力预测,是一种对非线性问题适应性高、具有概率意义输出的机器学习方法。以巷道掘进过程中钻箱钻进1000 mm时的钻进压力试验数据作为最优核函数和历史点数的筛选样本,以10种核函数(E、SE、RQ、Matern3/2、Matern5/2、ARDE、ARDSE、ARDRQ、ARDMatern3/2、ARDMatern5/2)和7种历史点数(8、10、12、14、16、18、20)作为筛选对象,通过负对数边缘似然函数为极小化目标函数自适应获取最优超参数,以单步外推的方式和训练集、测试集7∶3的比例对筛选样本进行了70次数值解算。分别以测试集可决系数(R^(2))、测试集均方根误差(RMSE)、测试集平均绝对误差(MAE)为数值解算评价指标,获取了4种锚杆支护钻进压力预测策略的最优核函数和最优历时点数组合(Matern5/2+历时点数10、ARDMatern5/2+历史点数10、SE+历时点数18、RQ+历史点数18)。基于最小化计算量,选取最优核函数为Matern5/2、最优历史点数为10,再次分别对巷道掘进过程中钻箱钻进1200、2400、3000 mm的钻进压力试验数据进行数值解算,给出95%置信区间下锚杆支护钻进压力预测分布。所提出的方法对于钻箱钻进1200 mm的钻进压力的预测数据,R^(2)为0.61317,MAE为0.026957,区间平均宽度百分比为3.072%;所提出的方法对于钻箱钻进2400 mm的钻进压力的预测数据,R^(2)为0.93118,MAE为0.010895,区间平均宽度百分比为0.581%;所提出的方法对于钻箱钻进3000 mm的钻进压力的预测数据,R^(2)为0.99647,MAE为0.0091847,区间平均宽度百分比为0.614%。最终发现,不同核函数和历史点数的组合选择会有较大差距的预测效果,是不可忽略的两个重要因素,本研究方法对围岩硬度分布均匀的数据波段预测结果优秀,对围岩硬度突变的数据波段预测结果在可接受范围内。 展开更多
关键词 锚杆支护 钻进压力预测 高斯过程回归 核函数 历时点数 置信区间
在线阅读 下载PDF
基于改进高斯过程回归模型的短期负荷区间预测 被引量:38
10
作者 宗文婷 卫志农 +3 位作者 孙国强 李慧杰 CHEUNG Kwok W 孙永辉 《电力系统及其自动化学报》 CSCD 北大核心 2017年第8期22-28,共7页
考虑到电力系统短期负荷预测的精度直接影响电网运行的经济性和安全性,而传统点预测方法不能计及电网运行中的众多不确定性因素,提出一种基于改进高斯过程回归的短期负荷区间预测方法。采用模糊C-均值聚类算法从历史数据中寻找相似日,... 考虑到电力系统短期负荷预测的精度直接影响电网运行的经济性和安全性,而传统点预测方法不能计及电网运行中的众多不确定性因素,提出一种基于改进高斯过程回归的短期负荷区间预测方法。采用模糊C-均值聚类算法从历史数据中寻找相似日,从而构建更为合理的样本集,并采用多核协方差函数改进传统高斯过程回归算法,最终得到一定置信水平下的区间预测结果。实际算例计算结果表明,该方法与常规方法相比,预测精度有所提高,其区间预测结果覆盖率较高,适合工程实际应用。 展开更多
关键词 区间预测 高斯过程回归 电力系统短期负荷 多核协方差函数 聚类分析
在线阅读 下载PDF
基于高斯过程模型的异常检测算法 被引量:16
11
作者 于冰洁 夏战国 王久龙 《计算机工程与设计》 北大核心 2016年第4期914-920,953,共8页
为检测数据中的异常信息,提出基于高斯过程模型的异常检测算法。高斯过程可以根据训练样本从先验分布转到后验分布,对核函数的超参数进行推理,预测输出具有清晰的概率解释。对基于高斯过程模型的异常检测算法进行定义和描述,用Server Co... 为检测数据中的异常信息,提出基于高斯过程模型的异常检测算法。高斯过程可以根据训练样本从先验分布转到后验分布,对核函数的超参数进行推理,预测输出具有清晰的概率解释。对基于高斯过程模型的异常检测算法进行定义和描述,用Server Computers(电脑服务器)数据进行仿真实验,结合高斯过程先验和回归理论,在实验中选取RBF作为核函数,利用目标类数据的特性构造特征向量集,在TE工业过程时序数据集上验证了该算法的适用性和有效性。 展开更多
关键词 高斯过程 协方差函数 异常检测 先验 回归
在线阅读 下载PDF
从高斯过程到高斯过程混合模型:研究与展望 被引量:17
12
作者 周亚同 陈子一 马尽文 《信号处理》 CSCD 北大核心 2016年第8期960-972,共13页
高斯过程(GP)模型是核学习方法与贝叶斯推理相结合的典范,现已成为机器学习领域的一个研究热点。作为对GP模型的拓展,高斯过程混合(MGP)模型具有更强大的学习能力和适应性。然而,目前关于GP和MGP模型的研究较为零散,尚缺少系统的分析与... 高斯过程(GP)模型是核学习方法与贝叶斯推理相结合的典范,现已成为机器学习领域的一个研究热点。作为对GP模型的拓展,高斯过程混合(MGP)模型具有更强大的学习能力和适应性。然而,目前关于GP和MGP模型的研究较为零散,尚缺少系统的分析与总结。本文首先对于GP模型的基本原理及其研究进展进行了深入地分析和讨论;然后将GP模型拓展至MGP模型,从多方面对MGP模型的研究现状和进展进行了深入地分析和讨论,并指出未来值得探索的研究方向和应用问题。 展开更多
关键词 高斯过程 高斯过程混合模型 机器学习 回归预测 聚类分析
在线阅读 下载PDF
基于高斯过程回归的锂电池SOC估算方法 被引量:8
13
作者 李超然 肖飞 +2 位作者 樊亚翔 杨国润 唐欣 《海军工程大学学报》 CAS 北大核心 2021年第1期55-59,共5页
作为电池管理系统的基础,锂电池荷电状态(state of charge,SOC)的实时准确估计十分重要。现有的锂电池SOC估算方法能够实现SOC的估算,但不能评估SOC估算结果的不确定性。为了解决这个问题,将高斯过程回归(Gaussian process regression,G... 作为电池管理系统的基础,锂电池荷电状态(state of charge,SOC)的实时准确估计十分重要。现有的锂电池SOC估算方法能够实现SOC的估算,但不能评估SOC估算结果的不确定性。为了解决这个问题,将高斯过程回归(Gaussian process regression,GPR)应用于锂电池SOC估算中,提出了一种基于GPR的锂电池SOC估算方法。该方法能够将电池管理系统测量所得电压、电流、温度作为输入,并以均值和置信区间的形式来输出SOC,二者可分别作为SOC的估计和不确定量化结果。另外,基于三星18650-20R锂电池数据集,分析了多种核函数对估算方法性能的影响,验证了所提方法的有效性。 展开更多
关键词 锂电池 荷电状态 高斯过程回归 核函数
在线阅读 下载PDF
基于混合变分自编码器回归模型的软测量建模方法 被引量:10
14
作者 崔琳琳 沈冰冰 葛志强 《自动化学报》 EI CAS CSCD 北大核心 2022年第2期398-407,共10页
近年来,变分自编码器(Variational auto-encoder,VAE)模型由于在概率数据描述和特征提取能力等方面的优越性,受到了学术界和工业界的广泛关注,并被引入到工业过程监测、诊断和软测量建模等应用中.然而,传统基于VAE的软测量方法使用高斯... 近年来,变分自编码器(Variational auto-encoder,VAE)模型由于在概率数据描述和特征提取能力等方面的优越性,受到了学术界和工业界的广泛关注,并被引入到工业过程监测、诊断和软测量建模等应用中.然而,传统基于VAE的软测量方法使用高斯分布作为潜在变量的分布,限制了其对复杂工业过程数据,尤其是多模态数据的建模能力.为了解决这一问题,本论文提出了一种混合变分自编码器回归模型(Mixture variational autoencoder regression,MVAER),并将其应用于复杂多模态工业过程的软测量建模.具体来说,该方法采用高斯混合模型来描述VAE的潜在变量分布,通过非线性映射将复杂多模态数据映射到潜在空间,学习各模态下的潜在变量,获取原始数据的有效特征表示.同时,建立潜在特征表示与关键质量变量之间的回归模型,实现软测量应用.通过一个数值例子和一个实际工业案例,对所提模型的性能进行了评估,验证了该模型的有效性和优越性. 展开更多
关键词 软测量 变分自编码器 高斯混合模型 混合变分自编码器回归模型 多模态工业过程
在线阅读 下载PDF
采用粒子群优化和高斯回归实现电池SOH估计 被引量:7
15
作者 陈琳 刘博豪 +3 位作者 丁云辉 吴淑孝 冯喆 潘海鸿 《汽车工程》 EI CSCD 北大核心 2021年第10期1472-1478,共7页
为准确估算锂离子电池非线性退化过程中的健康状态(SOH),提出融合自适应变异粒子群优化器和高斯过程回归的AMPSOGPR算法。首先提取欧姆内阻增量和电压样本熵作为电池退化表征量,然后引入自适应变异粒子群(AMPSO)优化高斯过程回归(GPR)... 为准确估算锂离子电池非线性退化过程中的健康状态(SOH),提出融合自适应变异粒子群优化器和高斯过程回归的AMPSOGPR算法。首先提取欧姆内阻增量和电压样本熵作为电池退化表征量,然后引入自适应变异粒子群(AMPSO)优化高斯过程回归(GPR)核函数的超参数,构建基于AMPSOGPR的SOH估算框架,用提取的退化表征量实现SOH估算;最后,通过对比AMPSOGPR采用不同核函数时SOH估算结果,得到最优核函数。实验结果表明,AMPSOGPR算法可以有效地估算电池SOH,且最大估算误差不超过2.08%。 展开更多
关键词 锂离子电池 健康状态 高斯过程回归 自适应变异粒子群优化器 核函数
在线阅读 下载PDF
基于概率预测的储能系统辅助风电场爬坡率控制 被引量:9
16
作者 田立亭 李建林 程林 《高电压技术》 EI CAS CSCD 北大核心 2015年第10期3233-3239,共7页
大规模风电接入后,风电场的爬坡率控制对电网稳定运行有着重要意义。为此提出了基于概率预测的储能系统辅助风电场爬坡率控制方法。利用Gaussian过程回归预测对下一时段风电场输出功率进行预测,得到风电场的预测爬坡率,当预测爬坡率超... 大规模风电接入后,风电场的爬坡率控制对电网稳定运行有着重要意义。为此提出了基于概率预测的储能系统辅助风电场爬坡率控制方法。利用Gaussian过程回归预测对下一时段风电场输出功率进行预测,得到风电场的预测爬坡率,当预测爬坡率超出限定要求时,通过储能充放电做出补偿。基于某风电场的历史出力数据进行了案例计算,结果表明,基于Gaussian回归的单步预测精度可满足风电场爬坡率控制的要求。考虑储能充放电容量限制后,储能可减少风电场50%以上的爬坡事件。此工作为储能辅助风电场爬坡率控制提供了有效的策略,可在实践中加以应用。 展开更多
关键词 爬坡率控制 概率预测 储能 gaussian过程回归 风电场 自相关函数 相空间重构
在线阅读 下载PDF
基于相空间重构和高斯过程回归的短期负荷预测 被引量:27
17
作者 顾熹 廖志伟 《电力系统保护与控制》 EI CSCD 北大核心 2017年第5期73-79,共7页
基于负荷时间序列的混沌特性,提出了一种结合相空间重构(PSR)和高斯过程回归(GPR)的短期负荷预测方法。首先采用C-C方法确定时间序列的延迟时间和嵌入维度,分别建立单变量和多变量的相空间重构模型。然后,分别运用单一与组合核函数的GP... 基于负荷时间序列的混沌特性,提出了一种结合相空间重构(PSR)和高斯过程回归(GPR)的短期负荷预测方法。首先采用C-C方法确定时间序列的延迟时间和嵌入维度,分别建立单变量和多变量的相空间重构模型。然后,分别运用单一与组合核函数的GP模型对负荷样本进行训练,根据最优超参数对24 h的日负荷进行预测。最后将预测结果与支持向量机模型以及多变量GP模型进行比较。结果显示,多变量组合核函数GP模型取得了更好的预测结果,验证了所提出的基于PSR和GPR的预测方法的可行性。 展开更多
关键词 相空间重构 高斯过程回归 C-C方法 短期负荷预测 组合核函数
在线阅读 下载PDF
基于高斯过程回归的链路质量预测模型 被引量:5
18
作者 舒坚 刘满兰 +2 位作者 尚亚青 陈宇斌 刘琳岚 《通信学报》 EI CSCD 北大核心 2018年第7期148-156,共9页
基于链路质量的路由选择机制可有效感知当前链路的变化,且对无线传感器网络的可靠通信起着重要作用,基于此,提出基于高斯过程回归的链路质量预测模型。通过灰关联方法计算链路质量参数与分组接收率的关联度,选取链路质量指示均值和信噪... 基于链路质量的路由选择机制可有效感知当前链路的变化,且对无线传感器网络的可靠通信起着重要作用,基于此,提出基于高斯过程回归的链路质量预测模型。通过灰关联方法计算链路质量参数与分组接收率的关联度,选取链路质量指示均值和信噪比均值作为模型的输入参数,以降低计算复杂度。采用链路质量指示均值、信噪比均值和分组接收率构建基于组合协方差函数的高斯过程回归模型预测链路质量。稳定场景与不稳定场景下的实验结果表明,与动态贝叶斯网络预测模型相比,所提模型具有更好的预测精确度。 展开更多
关键词 无线传感器网络 高斯过程回归 链路质量预测 组合协方差函数 灰关联算法
在线阅读 下载PDF
选用改进高斯过程回归模型的碳排放短期预测 被引量:7
19
作者 王阳 唐朝晖 +1 位作者 王紫勋 牛亚辉 《计算机工程与应用》 CSCD 北大核心 2018年第23期246-251,258,共7页
针对于采矿过程中以电机为研究对象的碳排放来源的复杂性以及其影响因素的多样性所引起的碳排放短期预测精度不高的问题,结合灰色理论提出一种基于改进高斯过程回归模型的铅锌矿采矿过程碳排放预测方法。对碳排放来源及其影响因素进行分... 针对于采矿过程中以电机为研究对象的碳排放来源的复杂性以及其影响因素的多样性所引起的碳排放短期预测精度不高的问题,结合灰色理论提出一种基于改进高斯过程回归模型的铅锌矿采矿过程碳排放预测方法。对碳排放来源及其影响因素进行分析,用灰色理论进行聚类分析以归并同类因素;根据灰色关联性分析得到主要影响因素;因传统高斯过程回归模型直接选定协方差函数的方式易导致与研究对象的物理过程拟合度不够高的问题,因而提出了一种依据先验知识的协方差函数选择方式,将四种常用协方差函数建模的训练结果作为反馈,结合极大似然估计法、最小二乘法和蒙特卡洛法参数估计的对比结果得到与研究对象拟合度最高即预测误差最小的协方差函数,进而得到预测效果最好的改进模型。经实验证明,基于该种方法选择协方差函数的模型相较于其他常规预测模型能更精确地预测铅锌矿采矿过程的碳排放量,其预测误差更小。 展开更多
关键词 灰色理论 聚类分析 关联性分析 高斯过程回归 协方差函数
在线阅读 下载PDF
鱼群算法优化组合核函数GPR的油井动液面预测 被引量:6
20
作者 李翔宇 高宪文 +1 位作者 李琨 侯延彬 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期11-15,共5页
针对抽油井动液面(DFL)检测主要依靠人工操作回声仪测试,无法实时在线检测,而单一核函数的高斯过程回归(GPR)无法明显提高预测精度和泛化能力,提出了一种人工鱼群算法(AFSA)优化组合核函数的动态高斯过程回归动液面预测模型.采用多项式... 针对抽油井动液面(DFL)检测主要依靠人工操作回声仪测试,无法实时在线检测,而单一核函数的高斯过程回归(GPR)无法明显提高预测精度和泛化能力,提出了一种人工鱼群算法(AFSA)优化组合核函数的动态高斯过程回归动液面预测模型.采用多项式函数、线性函数与径向基函数组合构建核函数,利用人工鱼群算法对核函数模型参数进行寻优,采用快速傅里叶变换(FFT)和核主元分析(KPCA)融合提取时频数据非线性特征作为模型输入,提高模型的预测精度和泛化能力.油田现场应用验证了该方法的有效性. 展开更多
关键词 油井 动液面 人工鱼群算法 组合核函数 高斯过程回归
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部