Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact ...Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.展开更多
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation...Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function...Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.展开更多
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
A new photoelastic method of obtaining mode I stress intensity factor(SIF) is presented. The method considers the influence of far field stress, σ ox , on the value of SIF. The only information needed for ...A new photoelastic method of obtaining mode I stress intensity factor(SIF) is presented. The method considers the influence of far field stress, σ ox , on the value of SIF. The only information needed for K Ⅰ calculation is the area between isochromatic fringe loops. The method is examined by two kinds of specimen in different load cases.Experimental results show that it is quite simple and of high precision.展开更多
The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic cha...The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic characteristic analysis method based on the unascertained factor method is given.The computational expression of structural characteristic is developed by the mathematics expression of unascertained factor and the principles of unascertained rational numbers arithmetic.An example is given,in which the possible values and confidence degrees of the unascertained structure characteristics are obtained.The calculated results show that the method is feasible and effective.展开更多
文摘Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.
文摘Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.
基金Projects(41172244,41072224) supported by the National Natural Science Foundation of ChinaProject(2009GGJS-037) supported by the Foundation of Youths Key Teacher by the Henan Educational Committee,China
文摘Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
文摘A new photoelastic method of obtaining mode I stress intensity factor(SIF) is presented. The method considers the influence of far field stress, σ ox , on the value of SIF. The only information needed for K Ⅰ calculation is the area between isochromatic fringe loops. The method is examined by two kinds of specimen in different load cases.Experimental results show that it is quite simple and of high precision.
基金the National Defense Science and Technology Research Projects of China (51421060505DZ0155)the National Science Foundation of Shaanxi Province of China (2005A009)
文摘The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic characteristic analysis method based on the unascertained factor method is given.The computational expression of structural characteristic is developed by the mathematics expression of unascertained factor and the principles of unascertained rational numbers arithmetic.An example is given,in which the possible values and confidence degrees of the unascertained structure characteristics are obtained.The calculated results show that the method is feasible and effective.