To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was...To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.展开更多
Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical sol...Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.展开更多
The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance m...The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b...An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.展开更多
Speckle filtering of synthetic aperture radar (SAR) images while preserving the spatial signal variability (texture and fine structures) still remains a challenge. Many algorithms have been proposed for the SAR imager...Speckle filtering of synthetic aperture radar (SAR) images while preserving the spatial signal variability (texture and fine structures) still remains a challenge. Many algorithms have been proposed for the SAR imagery despeckling. However, simulated annealing (SA) methods is one of excellent choices currently. A critical problem in the study on SA is to provide appropriate cooling schedules that ensure fast convergence to near-optimal solutions. This paper gives a new necessary and sufficient condition for the cooling schedule so that the algorithm state converges in all probability to the set of global minimum cost states. Moreover, it constructs an appropriate objective function for SAR image despeckling. An experimental result of the actual SAR image processing is obtained.展开更多
In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches a...In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches about the complexity of image sequence.To solve this problem,a criterion of evaluating image sequence complexity is proposed.Firstly,to characterize this criterion quantitatively,two metrics for measuring the complexity of image sequence,namely feature space similarity degree of global background(FSSDGB)and feature space occultation degree of local background(FSODLB)are developed.Here,FSSDGB reflects the ability of global background to introduce false alarms based on feature space,and FSODLB represents the difference between target and local background based on feature space.Secondly,the feature space is optimized by the grey relational method and relevant features are removed so that FSSDGB and FSODLB are more reasonable to establish complexity of single-frame images.Finally,the image sequence complexity is not a linear sum of the single-frame image complexity.Target tracking errors often occur in high-complexity images and the tracking effect of low-complexity images is very well.The nonlinear transformation based on median(NTM)is proposed to construct complexity of image sequence.The experimental results show that the proposed metric is more valid than other metrics,such as sequence correlation(SC)and interframe change degree(IFCD),and it is highly relevant to the actual performance of automatic target tracking algorithms.展开更多
基金Project(2009AA04Z214) supported by the National High Technology Research and Development Program of ChinaProject(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of China
文摘Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.
基金supported by the National Natural Science Foundationof China(61272119)
文摘The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金supported by the National Natural Science Foundation of China(6130127161331007)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(2011018512000820120185130001)the Fundamental Research Funds for Central Universities(ZYGX2012J043)
文摘An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.
基金ThisprojectwassupportedbytheNationalNaturalScienceFoundationofChina (No .6 98310 40 )
文摘Speckle filtering of synthetic aperture radar (SAR) images while preserving the spatial signal variability (texture and fine structures) still remains a challenge. Many algorithms have been proposed for the SAR imagery despeckling. However, simulated annealing (SA) methods is one of excellent choices currently. A critical problem in the study on SA is to provide appropriate cooling schedules that ensure fast convergence to near-optimal solutions. This paper gives a new necessary and sufficient condition for the cooling schedule so that the algorithm state converges in all probability to the set of global minimum cost states. Moreover, it constructs an appropriate objective function for SAR image despeckling. An experimental result of the actual SAR image processing is obtained.
基金supported by the National Natural Science Foundation of China(61703337)Shanghai Aerospace Science and Technology Innovation Fund(SAST2017-082)
文摘In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches about the complexity of image sequence.To solve this problem,a criterion of evaluating image sequence complexity is proposed.Firstly,to characterize this criterion quantitatively,two metrics for measuring the complexity of image sequence,namely feature space similarity degree of global background(FSSDGB)and feature space occultation degree of local background(FSODLB)are developed.Here,FSSDGB reflects the ability of global background to introduce false alarms based on feature space,and FSODLB represents the difference between target and local background based on feature space.Secondly,the feature space is optimized by the grey relational method and relevant features are removed so that FSSDGB and FSODLB are more reasonable to establish complexity of single-frame images.Finally,the image sequence complexity is not a linear sum of the single-frame image complexity.Target tracking errors often occur in high-complexity images and the tracking effect of low-complexity images is very well.The nonlinear transformation based on median(NTM)is proposed to construct complexity of image sequence.The experimental results show that the proposed metric is more valid than other metrics,such as sequence correlation(SC)and interframe change degree(IFCD),and it is highly relevant to the actual performance of automatic target tracking algorithms.