关于多峰值最大功率点跟踪(maximum power point tracking,MPPT)算法的研究例如粒子群MPPT算法和全局扫描法以及其改进算法,往往只关注其静态搜索能力和辐照度突变情况下的扫描过程。但外界环境改变造成的特性曲线持续变化过程中的动态...关于多峰值最大功率点跟踪(maximum power point tracking,MPPT)算法的研究例如粒子群MPPT算法和全局扫描法以及其改进算法,往往只关注其静态搜索能力和辐照度突变情况下的扫描过程。但外界环境改变造成的特性曲线持续变化过程中的动态性能研究有些欠缺。为了提升多峰值MPPT算法的动态性能,文中提出一种基于功率闭环法的改进动态多峰值MPPT算法。该算法结合三点法和粒子群算法,快速搜索出全局最大功率点,动态响应能力好,具有较好的实际应用价值。通过实验室和实际电站测试验证了该算法的正确性和有效性。展开更多
基于对现有多峰值最大功率点跟踪(maximum power point tracking,MPPT)方法不足的分析,提出一种基于功率闭环控制的动态MPPT跟踪策略。该方法采用功率闭环方式实现全局最大功率点的定位,利用功率闭环控制在P-U曲线上的局部不稳定现象实...基于对现有多峰值最大功率点跟踪(maximum power point tracking,MPPT)方法不足的分析,提出一种基于功率闭环控制的动态MPPT跟踪策略。该方法采用功率闭环方式实现全局最大功率点的定位,利用功率闭环控制在P-U曲线上的局部不稳定现象实现P-U曲线的快速全局扫描,克服了峰值点分布及算法参数取值对MPPT动态过程的影响。同时采用电压截止控制克服了功率闭环控制对系统整体稳定性的影响。采用基于粒子群(particle swarm optimization,PSO)算法的变步长跟踪策略消除了最大功率点跟踪的稳态功率震荡问题。最后,通过仿真与实验验证该方法的可行性和有效性,结果表明,该方法不依赖光伏阵列的已知信息,便可实现静态和动态环境下全局最大功率点跟踪,提高多峰值最大功率点跟踪的动态速度和稳态跟踪精度。展开更多
局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPP...局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。展开更多
老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数...老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。展开更多
文摘关于多峰值最大功率点跟踪(maximum power point tracking,MPPT)算法的研究例如粒子群MPPT算法和全局扫描法以及其改进算法,往往只关注其静态搜索能力和辐照度突变情况下的扫描过程。但外界环境改变造成的特性曲线持续变化过程中的动态性能研究有些欠缺。为了提升多峰值MPPT算法的动态性能,文中提出一种基于功率闭环法的改进动态多峰值MPPT算法。该算法结合三点法和粒子群算法,快速搜索出全局最大功率点,动态响应能力好,具有较好的实际应用价值。通过实验室和实际电站测试验证了该算法的正确性和有效性。
文摘基于对现有多峰值最大功率点跟踪(maximum power point tracking,MPPT)方法不足的分析,提出一种基于功率闭环控制的动态MPPT跟踪策略。该方法采用功率闭环方式实现全局最大功率点的定位,利用功率闭环控制在P-U曲线上的局部不稳定现象实现P-U曲线的快速全局扫描,克服了峰值点分布及算法参数取值对MPPT动态过程的影响。同时采用电压截止控制克服了功率闭环控制对系统整体稳定性的影响。采用基于粒子群(particle swarm optimization,PSO)算法的变步长跟踪策略消除了最大功率点跟踪的稳态功率震荡问题。最后,通过仿真与实验验证该方法的可行性和有效性,结果表明,该方法不依赖光伏阵列的已知信息,便可实现静态和动态环境下全局最大功率点跟踪,提高多峰值最大功率点跟踪的动态速度和稳态跟踪精度。
文摘局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。
文摘老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。