Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum...Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.展开更多
目的探究高特质焦虑个体认知重评和表达抑制的使用习惯及其在内隐/外显条件下使用2种情绪调节策略的特点。方法于2023年6月至2023年7月招募57名某军医大学非心理学专业本科生或研究生被试。采用特质焦虑量表(Trait form of Spielberger...目的探究高特质焦虑个体认知重评和表达抑制的使用习惯及其在内隐/外显条件下使用2种情绪调节策略的特点。方法于2023年6月至2023年7月招募57名某军医大学非心理学专业本科生或研究生被试。采用特质焦虑量表(Trait form of Spielberger’s State-Trait Anxiety Inventory,STAI-T)和情绪调节问卷(Emotion Regulation Questionnaire,ERQ)对其焦虑水平以及认知重评和表达抑制2种策略的使用习惯进行调查。按照STAI-T得分将其分为高特质焦虑(high trait anxiety,HTA)和低特质焦虑(low trait anxiety,LTA)2组,其中HTA组28例,LTA组29例,并采用内隐和外显情绪调节任务分析比较2种策略对负性情绪愉悦度和唤醒度的改善效果,以及外显条件下2种策略的难度和成功度差异。结果①2组均习惯于使用认知重评,而较少使用表达抑制[t(27)=3.94,P<0.001;t(28)=11.33,P<0.001];相较于LTA个体,HTA个体表达抑制的使用频率更高[t(55)=3.02,P<0.01],而认知重评的使用频率较低[t(55)=-2.20,P=0.02];②内隐条件下,相对于中性启动,认知重评(愉悦度:2.56±0.11 vs 2.73±0.12,P<0.01;唤醒度:6.68±0.18 vs 6.51±0.20,P<0.05)和表达抑制启动(愉悦度:2.56±0.11 vs 2.86±0.11,P<0.001;唤醒度:6.68±0.18 vs 6.30±0.20,P<0.001)都可改善2组被试的负性情绪体验,且表达抑制的效果更好(愉悦度:P<0.001,唤醒度:P<0.001)。③外显条件下,认知重评(愉悦度:2.92±0.12 vs 5.09±0.09,P<0.001;唤醒度:6.43±0.20 vs 4.33±0.21,P<0.001)和表达抑制(愉悦度:2.92±0.12 vs 4.34±0.09,P<0.001;唤醒度:6.43±0.20 vs 4.22±0.22,P<0.001)均可显著改善HTA和LTA个体的负性情绪体验,且认知重评对愉悦度的提升优于表达抑制(P<0.001);不同特质焦虑水平间比较显示HTA个体对两种情绪调节策略的使用均显得更为困难[认知重评:t(55)=2.16,P=0.02;表达抑制:t(55)=2.92,P<0.01],且表达抑制的情绪调节成功度更低[t(55)=-1.88,P=0.03];对HTA个体自身而言,使用表达抑制的难度要大于认知重评[4.00±1.81 vs 5.00±1.80,t(27)=-2.78,P<0.01],且成功度更低[7.04±1.00 vs 6.64±1.13,t(27)=2.09,P=0.02]。④比较内隐和外显条件下的情绪调节效应,发现高、低特质焦虑个体外显情绪调节对愉悦度(外显重评vs内隐重评:5.09±0.09 vs 2.73±0.12,P<0.001;外显抑制vs内隐抑制:4.34±0.09 vs 2.86±0.11,P<0.001)和唤醒度(外显重评vs内隐重评:4.33±0.21 vs 6.51±0.20,P<0.001;外显抑制vs内隐抑制:4.22±0.22 vs 6.30±0.20,P<0.001)的改善效果均优于内隐条件。结论高特质焦虑个体存在认知重评使用相对不足、表达抑制使用偏多的特点;在内隐和外显条件下,认知重评和表达抑制均能有效改善高特质焦虑个体的负性情绪体验,且外显情绪调节的效果均优于内隐。展开更多
A new general optimal principle of designing explicit finite difference method was obtained. Several applied cases were put forward to explain the uses of the principle. The validity of the principal was tested by a n...A new general optimal principle of designing explicit finite difference method was obtained. Several applied cases were put forward to explain the uses of the principle. The validity of the principal was tested by a numeric example.展开更多
文摘Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.
文摘目的探究高特质焦虑个体认知重评和表达抑制的使用习惯及其在内隐/外显条件下使用2种情绪调节策略的特点。方法于2023年6月至2023年7月招募57名某军医大学非心理学专业本科生或研究生被试。采用特质焦虑量表(Trait form of Spielberger’s State-Trait Anxiety Inventory,STAI-T)和情绪调节问卷(Emotion Regulation Questionnaire,ERQ)对其焦虑水平以及认知重评和表达抑制2种策略的使用习惯进行调查。按照STAI-T得分将其分为高特质焦虑(high trait anxiety,HTA)和低特质焦虑(low trait anxiety,LTA)2组,其中HTA组28例,LTA组29例,并采用内隐和外显情绪调节任务分析比较2种策略对负性情绪愉悦度和唤醒度的改善效果,以及外显条件下2种策略的难度和成功度差异。结果①2组均习惯于使用认知重评,而较少使用表达抑制[t(27)=3.94,P<0.001;t(28)=11.33,P<0.001];相较于LTA个体,HTA个体表达抑制的使用频率更高[t(55)=3.02,P<0.01],而认知重评的使用频率较低[t(55)=-2.20,P=0.02];②内隐条件下,相对于中性启动,认知重评(愉悦度:2.56±0.11 vs 2.73±0.12,P<0.01;唤醒度:6.68±0.18 vs 6.51±0.20,P<0.05)和表达抑制启动(愉悦度:2.56±0.11 vs 2.86±0.11,P<0.001;唤醒度:6.68±0.18 vs 6.30±0.20,P<0.001)都可改善2组被试的负性情绪体验,且表达抑制的效果更好(愉悦度:P<0.001,唤醒度:P<0.001)。③外显条件下,认知重评(愉悦度:2.92±0.12 vs 5.09±0.09,P<0.001;唤醒度:6.43±0.20 vs 4.33±0.21,P<0.001)和表达抑制(愉悦度:2.92±0.12 vs 4.34±0.09,P<0.001;唤醒度:6.43±0.20 vs 4.22±0.22,P<0.001)均可显著改善HTA和LTA个体的负性情绪体验,且认知重评对愉悦度的提升优于表达抑制(P<0.001);不同特质焦虑水平间比较显示HTA个体对两种情绪调节策略的使用均显得更为困难[认知重评:t(55)=2.16,P=0.02;表达抑制:t(55)=2.92,P<0.01],且表达抑制的情绪调节成功度更低[t(55)=-1.88,P=0.03];对HTA个体自身而言,使用表达抑制的难度要大于认知重评[4.00±1.81 vs 5.00±1.80,t(27)=-2.78,P<0.01],且成功度更低[7.04±1.00 vs 6.64±1.13,t(27)=2.09,P=0.02]。④比较内隐和外显条件下的情绪调节效应,发现高、低特质焦虑个体外显情绪调节对愉悦度(外显重评vs内隐重评:5.09±0.09 vs 2.73±0.12,P<0.001;外显抑制vs内隐抑制:4.34±0.09 vs 2.86±0.11,P<0.001)和唤醒度(外显重评vs内隐重评:4.33±0.21 vs 6.51±0.20,P<0.001;外显抑制vs内隐抑制:4.22±0.22 vs 6.30±0.20,P<0.001)的改善效果均优于内隐条件。结论高特质焦虑个体存在认知重评使用相对不足、表达抑制使用偏多的特点;在内隐和外显条件下,认知重评和表达抑制均能有效改善高特质焦虑个体的负性情绪体验,且外显情绪调节的效果均优于内隐。
文摘A new general optimal principle of designing explicit finite difference method was obtained. Several applied cases were put forward to explain the uses of the principle. The validity of the principal was tested by a numeric example.