以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化...以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化轨迹;利用文本语法分析技术,从专利权利要求书中提取subject-action-object三元组;基于语义词库WordNet进行语义加工,计算语义相似度,合并同义的subject-action-object三元组,绘制知识基因图谱.从美国专利数据库中采集了5 073项1975—1999年授权的数据挖掘领域的相关专利,分析了专利的地区分布情况和年度分布情况.从NBER(National Bureau of Economic Research)的专利数据集中查询得到专利引证关系,利用网络分析软件Pajek构建专利引证网络,作为实验数据样本,对所提出的知识基因提取方法进行验证.实验结果表明:所提取的subject-action-object三元组具备了知识基因稳定性、遗传性和变异性等特征,可以作为知识基因的一种表现形式.展开更多
With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced ...With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.展开更多
文摘以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化轨迹;利用文本语法分析技术,从专利权利要求书中提取subject-action-object三元组;基于语义词库WordNet进行语义加工,计算语义相似度,合并同义的subject-action-object三元组,绘制知识基因图谱.从美国专利数据库中采集了5 073项1975—1999年授权的数据挖掘领域的相关专利,分析了专利的地区分布情况和年度分布情况.从NBER(National Bureau of Economic Research)的专利数据集中查询得到专利引证关系,利用网络分析软件Pajek构建专利引证网络,作为实验数据样本,对所提出的知识基因提取方法进行验证.实验结果表明:所提取的subject-action-object三元组具备了知识基因稳定性、遗传性和变异性等特征,可以作为知识基因的一种表现形式.
基金supported by the National Key Research and Development Program of China(grant number:2017YFC0806503)。
文摘With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.