In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustai...In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustainable and self-powered functional systems.The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing,which have greatly changed the way of human production and daily life.This review mainly introduced the TENG applications in multidisci-pline scenarios of IoTs,including smart agriculture,smart industry,smart city,emergency monitoring,and machine learning-assisted artificial intelligence applications.The challenges and future research directions of TENG toward IoTs have also been proposed.The exten-sive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.展开更多
By analyzing existed Internet of Things' system security vulnerabilities, a security architecture on trusting one is constructed. In the infrastructure, an off-line identity authentication based on the combined publi...By analyzing existed Internet of Things' system security vulnerabilities, a security architecture on trusting one is constructed. In the infrastructure, an off-line identity authentication based on the combined public key (CPK) mechanism is proposed, which solves the problems about a mass amount of authentications and the cross-domain authentication by integrating nodes' validity of identity authentication and uniqueness of identification. Moreover, the proposal of constructing nodes' authentic identification, valid authentication and credible communication connection at the application layer through the perception layer impels the formation of trust chain and relationship among perceptional nodes. Consequently, a trusting environment of the Internet of Things is built, by which a guidance of designing the trusted one would be provided.展开更多
The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upo...The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upon blockchain have been explored recently for Internet of Things(IoTs).However,the access from a legitimate user may be denied without the pre-defined policy and data update on the blockchain could be costly to the owners.In this paper,we first address these issues by incorporating the Accountable Subgroup Multi-Signature(ASM)algorithm into the Attribute-based Access Control(ABAC)method with Policy Smart Contract,to provide a finegrained and flexible solution.Next,we propose a policy-based Chameleon Hash algorithm that allows the data to be updated in a reliable and convenient way by the authorized users.Finally,we evaluate our work by comparing its performance with the benchmarks.The results demonstrate significant improvement on the effectiveness and efficiency.展开更多
Internet of things has been widely applied to industrial control, smart city and environmental protection, in these applica- tion scenarios, sensing node needs to make real-time response to the feedback control of the...Internet of things has been widely applied to industrial control, smart city and environmental protection, in these applica- tion scenarios, sensing node needs to make real-time response to the feedback control of the application layer. Therefore, it is nec- essary to monitor whether or not awareness nodes are trusted in real time, but the existing mechanisms for trusted certification lack the real-time measurement and tracking of the sensing node. To solve the above problems, this paper proposes a dynamic metric based authentication mechanism for sensing nodes of Internet of things. Firstly, the dynamic trustworthiness measure of the sensing nodes is carried out by introducing the computational function such as the trust function, the trust- worthiness risk assessment function, the feed- back control function and the active function of the sensing node. The dynamic trustworthi- ness measure of sensing nodes from multiple dimensions can effectively describe the change of trusted value of sensing nodes. Then, on the basis of this, a trusted attestation based on node trusted measure is realized by using the revocable group signature mechanism of local verifier. The mechanism has anonymity, un- forgeability and traceability, which is proved the security in the standard model. Simulationexperiments show that the proposed trusted attestation mechanism is flexible, practical and ef|Scient and has better attack resistance. It can effectively guarantee the reliable data transmission of nodes and realize the dynamic tracking of node reliability, which has a lower impact on system performance.展开更多
With the ever-expanding applications of vehicles and the development of wireless communication technology,the burgeoning unmanned aerial vehicle(UAV)assisted vehicular internet of things(UVIoTs)has emerged,where the g...With the ever-expanding applications of vehicles and the development of wireless communication technology,the burgeoning unmanned aerial vehicle(UAV)assisted vehicular internet of things(UVIoTs)has emerged,where the ground vehicles can experience more efficient wireless services by employing UAVs as a temporary mobile base station.However,due to the diversity of UAVs,there exist UAVs such as jammers to degenerate the performance of wireless communication between the normal UAVs and vehicles.To solve above the problem,in this paper,we propose a game based secure data transmission scheme in UVIoTs.Specifically,we exploit the offensive and defensive game to model the interactions between the normal UAVs and jammers.Here,the strategy of the normal UAV is to determine whether to transmit data,while that of the jammer is whether to interfere.We then formulate two optimization problems,i.e.,maximizing the both utilities of UAVs and jammers.Afterwards,we exploit the backward induction method to analyze the proposed countermeasures and finally solve the optimal solution.Lastly,the simulation results show that the proposed scheme can improve the wireless communication performance under the attacks of jammers compared with conventional schemes.展开更多
Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we pre...Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we present a tradeoff between bandwidth and energy con- sumption in the loT in this paper. A service providing model is built to find the relation- ship between bandwidth and energy consump- tion using a cooperative differential game mo- del. The game solution is gotten in the condi- tion of grand coalition, feedback Nash equili- brium and intermediate coalitions and an allo- cation policy is obtain by Shapley theory. The results are shown as follows. Firstly, the per- formance of IoT decreases with the increasing of bandwidth cost or with the decreasing of en- ergy cost; secondly, all the nodes in the IoT com- posing a grand coalition can save bandwidth and energy consumption; thirdly, when the fac- tors of bandwidth cost and energy cost are eq- ual, the obtained number of provided services is an optimised value which is the trade-off between energy and bandwidth consumption.展开更多
The Internet of Things (IoT) is still in its infancy because of the limited capability of its embedded processor. In the meantime, re- search on artificial intelligence (AI) has made plenty of progress. The applic...The Internet of Things (IoT) is still in its infancy because of the limited capability of its embedded processor. In the meantime, re- search on artificial intelligence (AI) has made plenty of progress. The application of AI to loT will significantly increase the capa- bilities of IoT, and this will benefit both economic and social development. In this paper, the elementary concepts and key tech- nologies of AI are explained, and the model and principle of intelligent IoT, denoted I^2oT, resulting from the integration of AI and loT are discussed. I^2oT will be the most promising version of IoT. Finally, recommendations for further study and standardization of I2oT are made.展开更多
Editor's Desk:The Internet of Things is an important part of the emerging high-tech industry and has been recognized as one of the important technologies for addressing global financial crisis and revitalizing the e...Editor's Desk:The Internet of Things is an important part of the emerging high-tech industry and has been recognized as one of the important technologies for addressing global financial crisis and revitalizing the economy. Therefore, at the beginning of the new year, we are honored to have invited Mr. Samuel Qi (Qi Qingzhong), a famous Chinese communication technology expert and GM of Shanghai Symphony Telecommunications Co., Ltd., to give his views on the development strategy of the Internet of Things and Machine to Machine (M2M) Communications.展开更多
Due to the strong attacking ability, fast speed, simple implementation and other characteristics, differential fault analysis has become an important method to evaluate the security of cryptosystem in the Internet of ...Due to the strong attacking ability, fast speed, simple implementation and other characteristics, differential fault analysis has become an important method to evaluate the security of cryptosystem in the Internet of Things. As one of the AES finalists, the Serpent is a 128-bit Substitution-Permutation Network(SPN) cryptosystem. It has 32 rounds with the variable key length between 0 and 256 bits, which is flexible to provide security in the Internet of Things. On the basis of the byte-oriented model and the differential analysis, we propose an effective differential fault attack on the Serpent cryptosystem. Mathematical analysis and simulating experiment show that the attack could recover its secret key by introducing 48 faulty ciphertexts. The result in this study describes that the Serpent is vulnerable to differential fault analysis in detail. It will be beneficial to the analysis of the same type of other iterated cryptosystems.展开更多
The Internet of Things promises to offer numerous societal benefits by providing a spectrum of user applications.However,ethical ramifications of adopting such pervasive technology on a society-wide scale have not bee...The Internet of Things promises to offer numerous societal benefits by providing a spectrum of user applications.However,ethical ramifications of adopting such pervasive technology on a society-wide scale have not been adequately considered.Smart things endowed with artificial intelligence may carry out decisions that entail ethical consequences.It is assumed that the functioning of a smart device does not involve any ethical responsibility vis-a-vis its application context.Such a perspective may precipitate situations that endanger essential human values or cause physical or emotional harm.Therefore,it is necessary to consider the design of ethics within intelligent systems to safeguard human interests.In order to address these concerns,we propose a novel method based on Boolean algebra that enables a machine to exhibit varying ethical behaviour by employing the concept of ethics categories and ethics modes.Such enhancement of smart things offers a way to design ethically compliant smart devices and paves way for human friendly technology ecosystems.展开更多
Cities are the most preferable dwelling places, having with better employment opportunities, educational hubs, medical services, recreational facilities, theme parks, and shopping malls etc. Cities are the driving for...Cities are the most preferable dwelling places, having with better employment opportunities, educational hubs, medical services, recreational facilities, theme parks, and shopping malls etc. Cities are the driving forces for any national economy too. Unfortunately now a days, these cities are producing circa 70% of pollutants, even though they only oeeupy 2% of surface of the Earth. Pub- lic utility services cannot meet the demands of unexpected growth. The filthiness in cities causing decreasing of Quality of Life. In this light our research paper is giving more concentration on necessity of " Smart Cities", which are the basis for civic centric services. This article is throwing light on Smart Cities and its important roles. The beauty of this manuscript is scribbling "Smart Cities" concepts in pictorially. Moreover this explains on "Barcelona Smart City" using lnternet of Things Technologies. It is a good example in urban paradigm shift. Braeelona is like the heaven on the earth with by providing Quality of Life to all urban citizens. The GOD is Interenet of Things.展开更多
Determining the application and version of nodes in the Internet of Things (IoT) is very important for warning about and managing vulnerabilities in the IoT. This article defines the attributes for determining the a...Determining the application and version of nodes in the Internet of Things (IoT) is very important for warning about and managing vulnerabilities in the IoT. This article defines the attributes for determining the application and version of nodes in the roT. By improving the structure of the Internet web crawler, which obtains raw data from nodes, we can obtain data from nodes in the IoT. We improve on the existing strategy, in which only determinations are stored, by also storing downloaded raw data locally in MongoDB. This stored raw data can be conveniently used to determine application type and node version when a new determination method emerges or when there is a new application type or node version. In such instances, the crawler does not have to scan the Internet again. We show through experimentation that our crawler can crawl the loT and obtain data necessary for determining the application type and node version.展开更多
The Internet of Moving Things(IoMT)takes a step further with respect to traditional static IoT deployments.In this line,the integration of new eco-friendly mobility devices such as scooters or bicycles within the Coop...The Internet of Moving Things(IoMT)takes a step further with respect to traditional static IoT deployments.In this line,the integration of new eco-friendly mobility devices such as scooters or bicycles within the Cooperative-Intelligent Transportation Systems(C-ITS)and smart city ecosystems is crucial to provide novel services.To this end,a range of communication technologies is available,such as cellular,vehicular WiFi or Low-Power Wide-Area Network(LPWAN);however,none of them can fully cover energy consumption and Quality of Service(QoS)requirements.Thus,we propose a Decision Support System(DSS),based on supervised Machine Learning(ML)classification,for selecting the most adequate transmission interface to send a certain message in a multi-Radio Access Technology(RAT)set up.Different ML algorithms have been explored taking into account computing and energy constraints of IoMT enddevices and traffic type.Besides,a real implementation of a decision tree-based DSS for micro-controller units is presented and evaluated.The attained results demonstrate the validity of the proposal,saving energy in communication tasks as well as satisfying QoS requirements of certain urgent messages.The footprint of the real implementation on an Arduino Uno is 444 bytes and it can be executed in around 50µs.展开更多
In order to achieve dependable and efficient data acquisition and transmission in the Internet of Remote Things(IoRT),we investigate the optimization scheme of IoRT data acquisition under the unmanned aerial vehicle(U...In order to achieve dependable and efficient data acquisition and transmission in the Internet of Remote Things(IoRT),we investigate the optimization scheme of IoRT data acquisition under the unmanned aerial vehicle(UAV)-low earth orbit(LEO)satellite integrated space-air-ground network,in which the UAV acquires data from massive Internet of Things(IoT)devices in special scenarios.To combine with the actual scenario,we consider two different data types,that is,delay-sensitive data and delay-tolerant data,the transmission mode is accordingly divided into two types.For delay-sensitive data,the data will be transmitted via the LEO satellite relay to the data center(DC)in real-time.For delay-tolerant data,the UAV will store and carry the data until the acquisition is completed,and then return to DC.Due to nonconvexity and complexity of the formulated problem,a multi-dimensional optimization Rate Demand based Joint Optimization(RDJO)algorithm is proposed.The algorithm first uses successive convex approximation(SCA)technology to solve the non-convexity,and then based on the block coordinate descent(BCD)method,the data acquisition efficiency is maximized by jointly optimizing UAV deployment,the bandwidth allocation of IoRT devices,and the transmission power of the UAV.Finally,the proposed RDJO algorithm is compared with the conventional algorithms.Simulation consequences demonstrate that the efficiency of IoRT data acquisition can be greatly improved by multi-parameter optimization of the bandwidth allocation,UAV deployment and the transmission power.展开更多
The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-rel...The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.展开更多
The Internet of Things (IoT) has received much attention over the past decade. With the rapid increase in the use of smart devices, we are now able to collect big data on a daily basis. The data we are gathering (a...The Internet of Things (IoT) has received much attention over the past decade. With the rapid increase in the use of smart devices, we are now able to collect big data on a daily basis. The data we are gathering (and related problems) are becoming more complex and uncertain. Researchers have therefore turned to artificial intelligence (AI) to efficiently deal with the problems ereated by big data.展开更多
There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The re...There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.展开更多
One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this pa...One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p...With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3200304)the National Natural Science Foundation of China(52073031)+2 种基金Beijing Nova Program(Z191100001119047,Z211100002121148)Fundamental Research Funds for the Central Universities(E0EG6801X2)the“Hundred Talents Program”of the Chinese Academy of Sciences.
文摘In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustainable and self-powered functional systems.The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing,which have greatly changed the way of human production and daily life.This review mainly introduced the TENG applications in multidisci-pline scenarios of IoTs,including smart agriculture,smart industry,smart city,emergency monitoring,and machine learning-assisted artificial intelligence applications.The challenges and future research directions of TENG toward IoTs have also been proposed.The exten-sive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.
基金supported by the 863 Program under Grant No. 2008AA04A107
文摘By analyzing existed Internet of Things' system security vulnerabilities, a security architecture on trusting one is constructed. In the infrastructure, an off-line identity authentication based on the combined public key (CPK) mechanism is proposed, which solves the problems about a mass amount of authentications and the cross-domain authentication by integrating nodes' validity of identity authentication and uniqueness of identification. Moreover, the proposal of constructing nodes' authentic identification, valid authentication and credible communication connection at the application layer through the perception layer impels the formation of trust chain and relationship among perceptional nodes. Consequently, a trusting environment of the Internet of Things is built, by which a guidance of designing the trusted one would be provided.
基金supported by the National Natural Science Foundation of China under Grant 61972148。
文摘The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upon blockchain have been explored recently for Internet of Things(IoTs).However,the access from a legitimate user may be denied without the pre-defined policy and data update on the blockchain could be costly to the owners.In this paper,we first address these issues by incorporating the Accountable Subgroup Multi-Signature(ASM)algorithm into the Attribute-based Access Control(ABAC)method with Policy Smart Contract,to provide a finegrained and flexible solution.Next,we propose a policy-based Chameleon Hash algorithm that allows the data to be updated in a reliable and convenient way by the authorized users.Finally,we evaluate our work by comparing its performance with the benchmarks.The results demonstrate significant improvement on the effectiveness and efficiency.
基金supported by the National Natural Science Foundation of China (The key trusted running technologies for the sensing nodes in Internet of things: 61501007, The research of the trusted and security environment for high energy physics scientific computing system: 11675199)General Project of science and technology project of Beijing Municipal Education Commission: KM201610005023+2 种基金the outstanding personnel training program of Beijing municipal Party Committee Organization Department (The Research of Trusted Computing environment for Internet of things in Smart City: 2014000020124G041)The key technology research and validation issue for the emergency treatment telemedicine public service platform which integrates the military and civilian and bases on the broadband wireless networks (No.2013ZX03006001-005)the issue belongs to Major national science and technology projects
文摘Internet of things has been widely applied to industrial control, smart city and environmental protection, in these applica- tion scenarios, sensing node needs to make real-time response to the feedback control of the application layer. Therefore, it is nec- essary to monitor whether or not awareness nodes are trusted in real time, but the existing mechanisms for trusted certification lack the real-time measurement and tracking of the sensing node. To solve the above problems, this paper proposes a dynamic metric based authentication mechanism for sensing nodes of Internet of things. Firstly, the dynamic trustworthiness measure of the sensing nodes is carried out by introducing the computational function such as the trust function, the trust- worthiness risk assessment function, the feed- back control function and the active function of the sensing node. The dynamic trustworthi- ness measure of sensing nodes from multiple dimensions can effectively describe the change of trusted value of sensing nodes. Then, on the basis of this, a trusted attestation based on node trusted measure is realized by using the revocable group signature mechanism of local verifier. The mechanism has anonymity, un- forgeability and traceability, which is proved the security in the standard model. Simulationexperiments show that the proposed trusted attestation mechanism is flexible, practical and ef|Scient and has better attack resistance. It can effectively guarantee the reliable data transmission of nodes and realize the dynamic tracking of node reliability, which has a lower impact on system performance.
基金This work is supported in part by NSFC(nos.U1808207,U20A20175)the Project of Shanghai Municipal Science and Technology Commission(18510761000).
文摘With the ever-expanding applications of vehicles and the development of wireless communication technology,the burgeoning unmanned aerial vehicle(UAV)assisted vehicular internet of things(UVIoTs)has emerged,where the ground vehicles can experience more efficient wireless services by employing UAVs as a temporary mobile base station.However,due to the diversity of UAVs,there exist UAVs such as jammers to degenerate the performance of wireless communication between the normal UAVs and vehicles.To solve above the problem,in this paper,we propose a game based secure data transmission scheme in UVIoTs.Specifically,we exploit the offensive and defensive game to model the interactions between the normal UAVs and jammers.Here,the strategy of the normal UAV is to determine whether to transmit data,while that of the jammer is whether to interfere.We then formulate two optimization problems,i.e.,maximizing the both utilities of UAVs and jammers.Afterwards,we exploit the backward induction method to analyze the proposed countermeasures and finally solve the optimal solution.Lastly,the simulation results show that the proposed scheme can improve the wireless communication performance under the attacks of jammers compared with conventional schemes.
基金ACKNOWLEDGEMENT We gratefully acknowledge anonymous revie- wers who read drafts and made many helpful suggestions. This work was supported by the National Natural Science Foundation of China under Grant No. 61202079 the China Post- doctoral Science Foundation under Grant No. 2013M530526+2 种基金 the Foundation of Beijing En- gineering the Fundamental Research Funds for the Central Universities under Grant No. FRF-TP-13-015A and the Technology Centre for Convergence Networks and Ubiquitous Services.
文摘Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we present a tradeoff between bandwidth and energy con- sumption in the loT in this paper. A service providing model is built to find the relation- ship between bandwidth and energy consump- tion using a cooperative differential game mo- del. The game solution is gotten in the condi- tion of grand coalition, feedback Nash equili- brium and intermediate coalitions and an allo- cation policy is obtain by Shapley theory. The results are shown as follows. Firstly, the per- formance of IoT decreases with the increasing of bandwidth cost or with the decreasing of en- ergy cost; secondly, all the nodes in the IoT com- posing a grand coalition can save bandwidth and energy consumption; thirdly, when the fac- tors of bandwidth cost and energy cost are eq- ual, the obtained number of provided services is an optimised value which is the trade-off between energy and bandwidth consumption.
文摘The Internet of Things (IoT) is still in its infancy because of the limited capability of its embedded processor. In the meantime, re- search on artificial intelligence (AI) has made plenty of progress. The application of AI to loT will significantly increase the capa- bilities of IoT, and this will benefit both economic and social development. In this paper, the elementary concepts and key tech- nologies of AI are explained, and the model and principle of intelligent IoT, denoted I^2oT, resulting from the integration of AI and loT are discussed. I^2oT will be the most promising version of IoT. Finally, recommendations for further study and standardization of I2oT are made.
文摘Editor's Desk:The Internet of Things is an important part of the emerging high-tech industry and has been recognized as one of the important technologies for addressing global financial crisis and revitalizing the economy. Therefore, at the beginning of the new year, we are honored to have invited Mr. Samuel Qi (Qi Qingzhong), a famous Chinese communication technology expert and GM of Shanghai Symphony Telecommunications Co., Ltd., to give his views on the development strategy of the Internet of Things and Machine to Machine (M2M) Communications.
基金supported by the National Natural Science Foundation of China under Grant No.61003278,No.61073150 and No.61202371Innovation Program of Shanghai Municipal Education Commission under Grant No.14ZZ066+5 种基金the open research fund of State Key Laboratory of Information Securitythe Opening Project of Shanghai Key Laboratory of Integrate Administration Technologies for Information Securitythe Fundamental Research Funds for the Central Universities,National Key Basic Research Program of China under Grant No.2013CB338004China Postdoctoral Science Foundation under Grant No.2012M521829Shanghai Postdoctoral Research Funding Program under Grant No.12R21414500the National Social Science Foundation of China under Grant No.13CFX054
文摘Due to the strong attacking ability, fast speed, simple implementation and other characteristics, differential fault analysis has become an important method to evaluate the security of cryptosystem in the Internet of Things. As one of the AES finalists, the Serpent is a 128-bit Substitution-Permutation Network(SPN) cryptosystem. It has 32 rounds with the variable key length between 0 and 256 bits, which is flexible to provide security in the Internet of Things. On the basis of the byte-oriented model and the differential analysis, we propose an effective differential fault attack on the Serpent cryptosystem. Mathematical analysis and simulating experiment show that the attack could recover its secret key by introducing 48 faulty ciphertexts. The result in this study describes that the Serpent is vulnerable to differential fault analysis in detail. It will be beneficial to the analysis of the same type of other iterated cryptosystems.
文摘The Internet of Things promises to offer numerous societal benefits by providing a spectrum of user applications.However,ethical ramifications of adopting such pervasive technology on a society-wide scale have not been adequately considered.Smart things endowed with artificial intelligence may carry out decisions that entail ethical consequences.It is assumed that the functioning of a smart device does not involve any ethical responsibility vis-a-vis its application context.Such a perspective may precipitate situations that endanger essential human values or cause physical or emotional harm.Therefore,it is necessary to consider the design of ethics within intelligent systems to safeguard human interests.In order to address these concerns,we propose a novel method based on Boolean algebra that enables a machine to exhibit varying ethical behaviour by employing the concept of ethics categories and ethics modes.Such enhancement of smart things offers a way to design ethically compliant smart devices and paves way for human friendly technology ecosystems.
基金The financial support is fully funding by Ministry of Human Resource Development(MHRD)
文摘Cities are the most preferable dwelling places, having with better employment opportunities, educational hubs, medical services, recreational facilities, theme parks, and shopping malls etc. Cities are the driving forces for any national economy too. Unfortunately now a days, these cities are producing circa 70% of pollutants, even though they only oeeupy 2% of surface of the Earth. Pub- lic utility services cannot meet the demands of unexpected growth. The filthiness in cities causing decreasing of Quality of Life. In this light our research paper is giving more concentration on necessity of " Smart Cities", which are the basis for civic centric services. This article is throwing light on Smart Cities and its important roles. The beauty of this manuscript is scribbling "Smart Cities" concepts in pictorially. Moreover this explains on "Barcelona Smart City" using lnternet of Things Technologies. It is a good example in urban paradigm shift. Braeelona is like the heaven on the earth with by providing Quality of Life to all urban citizens. The GOD is Interenet of Things.
基金supported by the ZTE Corporation and University Joint Research Project under Grant No.CON1307100001the National High Technology Research and Development Program of China under Grant No.2013AA013602
文摘Determining the application and version of nodes in the Internet of Things (IoT) is very important for warning about and managing vulnerabilities in the IoT. This article defines the attributes for determining the application and version of nodes in the roT. By improving the structure of the Internet web crawler, which obtains raw data from nodes, we can obtain data from nodes in the IoT. We improve on the existing strategy, in which only determinations are stored, by also storing downloaded raw data locally in MongoDB. This stored raw data can be conveniently used to determine application type and node version when a new determination method emerges or when there is a new application type or node version. In such instances, the crawler does not have to scan the Internet again. We show through experimentation that our crawler can crawl the loT and obtain data necessary for determining the application type and node version.
基金This work has been supported by the Spanish Ministry of Science,Innovation and Universities,under the Ramon y Cajal Program(ref.RYC-2017-23823)and the projects PERSEIDES(ref.TIN2017-86885-R)and Go2Edge(ref.RED2018-102585-T)the European Commission,under the 5G-MOBIX(Grant No.825496)and IoTCrawler(Grant No.779852)projectsthe Spanish Ministry of Energy,through the project MECANO(ref.PGE-MOVESSING-2019-000104).
文摘The Internet of Moving Things(IoMT)takes a step further with respect to traditional static IoT deployments.In this line,the integration of new eco-friendly mobility devices such as scooters or bicycles within the Cooperative-Intelligent Transportation Systems(C-ITS)and smart city ecosystems is crucial to provide novel services.To this end,a range of communication technologies is available,such as cellular,vehicular WiFi or Low-Power Wide-Area Network(LPWAN);however,none of them can fully cover energy consumption and Quality of Service(QoS)requirements.Thus,we propose a Decision Support System(DSS),based on supervised Machine Learning(ML)classification,for selecting the most adequate transmission interface to send a certain message in a multi-Radio Access Technology(RAT)set up.Different ML algorithms have been explored taking into account computing and energy constraints of IoMT enddevices and traffic type.Besides,a real implementation of a decision tree-based DSS for micro-controller units is presented and evaluated.The attained results demonstrate the validity of the proposal,saving energy in communication tasks as well as satisfying QoS requirements of certain urgent messages.The footprint of the real implementation on an Arduino Uno is 444 bytes and it can be executed in around 50µs.
基金partially supported by the Project of Cultivation for young top-motch Talents of Beijing Municipal Institutions(BPHR202203228)Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(No.L192022)+3 种基金Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(No.L212026,L222004)R&D Program of Beijing Municipal Education Commission(No.KM202011232002)National Natural Science Foundation of China under Grant(No.61901043)。
文摘In order to achieve dependable and efficient data acquisition and transmission in the Internet of Remote Things(IoRT),we investigate the optimization scheme of IoRT data acquisition under the unmanned aerial vehicle(UAV)-low earth orbit(LEO)satellite integrated space-air-ground network,in which the UAV acquires data from massive Internet of Things(IoT)devices in special scenarios.To combine with the actual scenario,we consider two different data types,that is,delay-sensitive data and delay-tolerant data,the transmission mode is accordingly divided into two types.For delay-sensitive data,the data will be transmitted via the LEO satellite relay to the data center(DC)in real-time.For delay-tolerant data,the UAV will store and carry the data until the acquisition is completed,and then return to DC.Due to nonconvexity and complexity of the formulated problem,a multi-dimensional optimization Rate Demand based Joint Optimization(RDJO)algorithm is proposed.The algorithm first uses successive convex approximation(SCA)technology to solve the non-convexity,and then based on the block coordinate descent(BCD)method,the data acquisition efficiency is maximized by jointly optimizing UAV deployment,the bandwidth allocation of IoRT devices,and the transmission power of the UAV.Finally,the proposed RDJO algorithm is compared with the conventional algorithms.Simulation consequences demonstrate that the efficiency of IoRT data acquisition can be greatly improved by multi-parameter optimization of the bandwidth allocation,UAV deployment and the transmission power.
基金supported by National Natural Science Foundation of China(Grant No.62071377,62101442,62201456)Natural Science Foundation of Shaanxi Province(Grant No.2023-YBGY-036,2022JQ-687)The Graduate Student Innovation Foundation Project of Xi’an University of Posts and Telecommunications under Grant CXJJDL2022003.
文摘The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.
文摘The Internet of Things (IoT) has received much attention over the past decade. With the rapid increase in the use of smart devices, we are now able to collect big data on a daily basis. The data we are gathering (and related problems) are becoming more complex and uncertain. Researchers have therefore turned to artificial intelligence (AI) to efficiently deal with the problems ereated by big data.
基金supported by the National Science Foundation of China(No.U21A20450)Natural Science Foundation of Jiangsu Province Major Project(No.BK20192002)+1 种基金National Natural Science Foundation of China(No.61971440)National Natural Science Foundation of China(No.62271266).
文摘There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61601346 and 62377039)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ6044)+2 种基金the Ministry of Industry and Information Technology of the People's Republic of China(Grant No.2023-276-1-1)the Fundamental Research Funds for the Central Universities,Northwestern Polytechnical University(Grant No.31020180QD089)the Aeronautical Science Foundation of China(Grant Nos.20200043053004 and 20200043053005)。
文摘One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by the National Natural Science Foundation of China(No.62171051)。
文摘With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.