A new visual method for quantitative measurement of frothers effect and flotation efficiency was presented. A self-designed electrolytic cell was chosen as the reaction environment with sodium chloride (NaCl) as the e...A new visual method for quantitative measurement of frothers effect and flotation efficiency was presented. A self-designed electrolytic cell was chosen as the reaction environment with sodium chloride (NaCl) as the electrolyte. Constant current, supplied by a self-designed power supplier and fixed cathode and anode equipment, guaranteed the constant bubble volume per unit time. Even aperture of the cathode material guaranteed the original bubbles size to be uniform. Bubble generating equipment was connected with a microscopical camera. Statistic data collected by high speed charge-coupled device (CCD) and processed by software Sigmascan and Matlab could reflect bubble characteristics. The efficiency of dipropylene glycol monomethyl ether (DPM) and tripropylene glycol n-butyl ethel (TPnB) were measured at the same condition, and 2×10-4 mol/L and 5×10-2 mol/L were found to be the inflexions of bubble size changes.展开更多
A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect...A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.展开更多
The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat...The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.展开更多
An improved whole model of beam pumping system was built. In the detail, for surface transmission system(STS), a new mathematical model was established considering the influence of some factors on the STS's torsio...An improved whole model of beam pumping system was built. In the detail, for surface transmission system(STS), a new mathematical model was established considering the influence of some factors on the STS's torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string(SRS), an improved mathematical model was built considering the influence of some parameters on the SRS's longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system efficiency is sensitive to motor power, pump diameter, stroke number, ratio of gas and oil, and submergence depth. The simulation results have important significance for improving the efficiency of beam pumping system.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. ...A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.展开更多
In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study des...In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.展开更多
基金Project(50834006) supported by National Natural of Science Foundation of China
文摘A new visual method for quantitative measurement of frothers effect and flotation efficiency was presented. A self-designed electrolytic cell was chosen as the reaction environment with sodium chloride (NaCl) as the electrolyte. Constant current, supplied by a self-designed power supplier and fixed cathode and anode equipment, guaranteed the constant bubble volume per unit time. Even aperture of the cathode material guaranteed the original bubbles size to be uniform. Bubble generating equipment was connected with a microscopical camera. Statistic data collected by high speed charge-coupled device (CCD) and processed by software Sigmascan and Matlab could reflect bubble characteristics. The efficiency of dipropylene glycol monomethyl ether (DPM) and tripropylene glycol n-butyl ethel (TPnB) were measured at the same condition, and 2×10-4 mol/L and 5×10-2 mol/L were found to be the inflexions of bubble size changes.
基金Project(2014CB046403)supported by the National Basic Research Program of ChinaProject(2013BAF07B01)supported by the National Key Technology R&D Program of China
文摘A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.
基金Project(2011-0021376) supported by Basic Science Program through the National Research Foundation (NRF) Funded by the Ministry of Education,Science and Technology of Korea
文摘The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.
基金Projects(50974108,51174175) supported by the National Natural Science Foundation of China
文摘An improved whole model of beam pumping system was built. In the detail, for surface transmission system(STS), a new mathematical model was established considering the influence of some factors on the STS's torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string(SRS), an improved mathematical model was built considering the influence of some parameters on the SRS's longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system efficiency is sensitive to motor power, pump diameter, stroke number, ratio of gas and oil, and submergence depth. The simulation results have important significance for improving the efficiency of beam pumping system.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09+1 种基金2006BAJ02A13-4) supported by the National Key Technologies R&D ProgramProject(2006BAJ01A06-3) supported by the Key R & D Program during the Eleventh Five-Year Plan Period,China
文摘A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.
文摘In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.