为了明确黄土旱塬区不同降雨年型下秸秆覆盖量对土壤水温效应和冬小麦产量影响的机理,本研究连续7年研究了秸秆覆盖量在不同降雨年型对土壤水分、温度及冬小麦耗水和产量的影响。结果表明,秸秆覆盖显著提升越冬期地温,覆盖量越大,增温...为了明确黄土旱塬区不同降雨年型下秸秆覆盖量对土壤水温效应和冬小麦产量影响的机理,本研究连续7年研究了秸秆覆盖量在不同降雨年型对土壤水分、温度及冬小麦耗水和产量的影响。结果表明,秸秆覆盖显著提升越冬期地温,覆盖量越大,增温效果逐渐减弱。在干旱年和平水年,返青期1500 kg hm^(-2)处理呈增温趋势,而丰水年则表现为降温;不同年型下,覆盖量越大降温效果越显著。秸秆覆盖在冬小麦生育期内均增加了0~2 m土层的土壤贮水量,且覆盖量越大贮水量越高;干旱年和平水年,耗水量随覆盖量增加而减少,而丰水年则相反。干旱年返青—灌浆期,1500 kg hm^(-2)处理较露地贮水量增加11.8 mm,且全生育期耗水量在各年型下均高于露地6.9~14.8 mm,其中返青—拔节期和灌浆—成熟期的耗水量增加尤为显著。在产量和水分利用效率方面,1500 kg hm^(-2)处理分别较露地增加17.6%和14.8%,增产主要源于穗数增加;3000 kg hm^(-2)处理的产量和水分利用效率与露地接近,而覆盖量进一步增加则导致产量和水分利用效率下降。当1500 kg hm^(-2)覆盖条件下,可有效提高干旱年和平水年返青期土壤温度,达到高产和高水分利用效率,3000 kg hm^(-2)为临界值,过高覆盖量虽显著增强保水效果,但因降温过度,产量和水分利用效率下降。展开更多
净生态系统CO_(2)交换量(NEE)和蒸散(ET)是表征半干旱区生态系统碳水循环能力的重要指标。对碳水通量动态变化的准确模拟和驱动机制的深入分析,有助于明确黄土高原半干旱区草地生态系统的功能及其对气候变化的响应。基于黄土高原铁杆蒿...净生态系统CO_(2)交换量(NEE)和蒸散(ET)是表征半干旱区生态系统碳水循环能力的重要指标。对碳水通量动态变化的准确模拟和驱动机制的深入分析,有助于明确黄土高原半干旱区草地生态系统的功能及其对气候变化的响应。基于黄土高原铁杆蒿草地生态系统2018—2022年日尺度通量观测数据,使用多元线性回归模型、机器学习模型(随机森林、支持向量机和人工神经网络模型)和融合生态学知识与机器学习的生态知识-机器学习(EML)模型分别对NEE和ET进行拟合。其中,有6种基于不同生态假设的EML模型用于拟合NEE,7种基于不同生态假设的EML模型用于拟合ET。最后构建拟合效果最好和解释能力最优的EML模型并探究环境和植被因素对NEE和ET的影响。结果表明:(1)包含了气象因素、土壤水分因素和植被因素的EML模型对NEE和ET的拟合效果最好,R2和RMSE分别为0.81和0.70 g C m^(-2)d^(-1),0.83和0.48 mm/d,MRE和MAE分别为1.72和0.48 g C m^(-2)d^(-1),0.29和0.30 mm/d。该模型在NEE和ET上的拟合能力较多元线性回归模型提升了24.62%和12.16%,较机器学习模型平均提升了13.02%和6.87%。(2)空气温度是NEE和ET的主要影响因素,重要性占比分别为63.12%和60.38%。6℃和22℃是草地NEE日均空气温度的阈值,在6—22℃之间NEE处于下降趋势,在22℃后NEE变为平稳趋势。0℃和22℃是草地ET日均空气温度的阈值,当空气温度大于22℃后,ET由上升趋势转变为平稳趋势。(3)土壤水分因素在NEE和ET的重要影响因素中的占比分别为17.13%和5.66%,NEE对土壤水分的敏感性高于ET。研究结果有助于完善半干旱区草地生态系统碳水通量的模拟方法,并明确其对环境和植被因素的响应。展开更多
[目的]叶面积指数(leaf area index, LAI)作为生态系统水循环过程模拟研究的关键参数,其快速动态模拟可解决土壤水-汽-热-气耦合模型STEMMUS(simultaneous transfer of energy, mass and momentum in unsaturated soil)只能使用固定或实...[目的]叶面积指数(leaf area index, LAI)作为生态系统水循环过程模拟研究的关键参数,其快速动态模拟可解决土壤水-汽-热-气耦合模型STEMMUS(simultaneous transfer of energy, mass and momentum in unsaturated soil)只能使用固定或实测LAI作为输入参数的局限性。[方法]将EPIC模型中的“植物叶面积发育子模块”与STEMMUS模型耦合,采用2019年和2020年子洲县山地苹果试验示范基地苹果生长条件下实测的果树蒸腾、土壤水分和土壤温度数据对模型进行率定与验证,以评估耦合模型在黄土高原的适用性。[结果]通过优化植物生长参数,耦合叶面积发育子模块后的STEMMUS模型对苹果树蒸腾耗水过程的模拟精度显著提高,率定年和验证年的归一化均方根误差(NRMSE)和平均绝对误差(MAE)分别从原模型的40.2%、61.9%和0.52、0.64 mm/d降低到耦合模型的30.0%、33.2%和0.42、0.38 mm/d。同时,耦合模型可较好地模拟苹果园的土壤水热动态过程,在率定期和验证期模拟土壤水分体积分数和土壤温度的NRMSE分别为1.4%~32.9%和2.9%~9.5%,MAE分别为0.13~4.26 cm^(3)/cm^(3)、0.34~1.49℃。[结论]模拟值与实测值吻合度较高,表明耦合模型可准确描述黄土高原苹果园果树叶面积动态生长和生态水文过程,研究结果可为黄土区果园生态水文过程的研究提供技术支撑。展开更多
文摘为了明确黄土旱塬区不同降雨年型下秸秆覆盖量对土壤水温效应和冬小麦产量影响的机理,本研究连续7年研究了秸秆覆盖量在不同降雨年型对土壤水分、温度及冬小麦耗水和产量的影响。结果表明,秸秆覆盖显著提升越冬期地温,覆盖量越大,增温效果逐渐减弱。在干旱年和平水年,返青期1500 kg hm^(-2)处理呈增温趋势,而丰水年则表现为降温;不同年型下,覆盖量越大降温效果越显著。秸秆覆盖在冬小麦生育期内均增加了0~2 m土层的土壤贮水量,且覆盖量越大贮水量越高;干旱年和平水年,耗水量随覆盖量增加而减少,而丰水年则相反。干旱年返青—灌浆期,1500 kg hm^(-2)处理较露地贮水量增加11.8 mm,且全生育期耗水量在各年型下均高于露地6.9~14.8 mm,其中返青—拔节期和灌浆—成熟期的耗水量增加尤为显著。在产量和水分利用效率方面,1500 kg hm^(-2)处理分别较露地增加17.6%和14.8%,增产主要源于穗数增加;3000 kg hm^(-2)处理的产量和水分利用效率与露地接近,而覆盖量进一步增加则导致产量和水分利用效率下降。当1500 kg hm^(-2)覆盖条件下,可有效提高干旱年和平水年返青期土壤温度,达到高产和高水分利用效率,3000 kg hm^(-2)为临界值,过高覆盖量虽显著增强保水效果,但因降温过度,产量和水分利用效率下降。
文摘净生态系统CO_(2)交换量(NEE)和蒸散(ET)是表征半干旱区生态系统碳水循环能力的重要指标。对碳水通量动态变化的准确模拟和驱动机制的深入分析,有助于明确黄土高原半干旱区草地生态系统的功能及其对气候变化的响应。基于黄土高原铁杆蒿草地生态系统2018—2022年日尺度通量观测数据,使用多元线性回归模型、机器学习模型(随机森林、支持向量机和人工神经网络模型)和融合生态学知识与机器学习的生态知识-机器学习(EML)模型分别对NEE和ET进行拟合。其中,有6种基于不同生态假设的EML模型用于拟合NEE,7种基于不同生态假设的EML模型用于拟合ET。最后构建拟合效果最好和解释能力最优的EML模型并探究环境和植被因素对NEE和ET的影响。结果表明:(1)包含了气象因素、土壤水分因素和植被因素的EML模型对NEE和ET的拟合效果最好,R2和RMSE分别为0.81和0.70 g C m^(-2)d^(-1),0.83和0.48 mm/d,MRE和MAE分别为1.72和0.48 g C m^(-2)d^(-1),0.29和0.30 mm/d。该模型在NEE和ET上的拟合能力较多元线性回归模型提升了24.62%和12.16%,较机器学习模型平均提升了13.02%和6.87%。(2)空气温度是NEE和ET的主要影响因素,重要性占比分别为63.12%和60.38%。6℃和22℃是草地NEE日均空气温度的阈值,在6—22℃之间NEE处于下降趋势,在22℃后NEE变为平稳趋势。0℃和22℃是草地ET日均空气温度的阈值,当空气温度大于22℃后,ET由上升趋势转变为平稳趋势。(3)土壤水分因素在NEE和ET的重要影响因素中的占比分别为17.13%和5.66%,NEE对土壤水分的敏感性高于ET。研究结果有助于完善半干旱区草地生态系统碳水通量的模拟方法,并明确其对环境和植被因素的响应。
文摘[目的]叶面积指数(leaf area index, LAI)作为生态系统水循环过程模拟研究的关键参数,其快速动态模拟可解决土壤水-汽-热-气耦合模型STEMMUS(simultaneous transfer of energy, mass and momentum in unsaturated soil)只能使用固定或实测LAI作为输入参数的局限性。[方法]将EPIC模型中的“植物叶面积发育子模块”与STEMMUS模型耦合,采用2019年和2020年子洲县山地苹果试验示范基地苹果生长条件下实测的果树蒸腾、土壤水分和土壤温度数据对模型进行率定与验证,以评估耦合模型在黄土高原的适用性。[结果]通过优化植物生长参数,耦合叶面积发育子模块后的STEMMUS模型对苹果树蒸腾耗水过程的模拟精度显著提高,率定年和验证年的归一化均方根误差(NRMSE)和平均绝对误差(MAE)分别从原模型的40.2%、61.9%和0.52、0.64 mm/d降低到耦合模型的30.0%、33.2%和0.42、0.38 mm/d。同时,耦合模型可较好地模拟苹果园的土壤水热动态过程,在率定期和验证期模拟土壤水分体积分数和土壤温度的NRMSE分别为1.4%~32.9%和2.9%~9.5%,MAE分别为0.13~4.26 cm^(3)/cm^(3)、0.34~1.49℃。[结论]模拟值与实测值吻合度较高,表明耦合模型可准确描述黄土高原苹果园果树叶面积动态生长和生态水文过程,研究结果可为黄土区果园生态水文过程的研究提供技术支撑。