A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating r...A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.展开更多
To improve the adsorption properties of chemically modified chitosan, the chelating resin of salicylal chitosan Schiff bases was prepared by the template cross-linking method using Cu(Ⅱ) as template ion and ethylen...To improve the adsorption properties of chemically modified chitosan, the chelating resin of salicylal chitosan Schiff bases was prepared by the template cross-linking method using Cu(Ⅱ) as template ion and ethylene glycol bisglycidyl ether as cross-linking agent in microwave, and was characterized by IR. The adsorption capacity and selectivity coefficient of the chemically modified chitosan for Cu(Ⅱ), Fe(Ⅲ) and Zn(Ⅱ) were investigated, respectively. The results show that the adsorption capacity of the resin 2.73 mmol/g for Cu(Ⅱ) is bigger than that for other two metal ions, 0.22 mmol/g for Fe(Ⅲ), and 0.42 mmol/g for Zn(Ⅱ), and the selectivity coefficients are as follows: KCu(Ⅱ)/Fe(Ⅲ)=12.4, KCu(Ⅱ)/Zn(Ⅱ)=6.5.展开更多
PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synt...PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synthetic aqueous samples. Different generations of PAMAM were used to obtain different chelating resins, PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA. The synthesized resins were characterized by FTIR and elemental analysis. The effect of solution pH, kinetic studies, resin loading capacity, matrix effects etc., on metal ion adsorption to adsorbent phase, were studied by batch method. The PS-1.0G PAMAM-IDA resin was the most excellent adsorbents, with a maximum adsorption capacity of(24.09±1.79) mg/g for Ni2+ ion at pH=7. The interpretation of the equilibrium data was given by Langmuir isotherms model, and the correlation coefficient values for PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA resins were 0.992, 0.994 and 0.987, respectively.展开更多
This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height ...This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height (7.0–14.0 cm),feed flow rate (4.5–9.0 mL/min),initial copper (Ⅱ) concentration of the feed (250–1000 mg/L),feed temperature (25–40 ℃) and the value of pH (2.0–4.0) on the adsorption process of the PS-AMP resin were investigated.The experimental data showed that the PS-AMP resin can deeply eliminate copper (Ⅱ) from the simulated cobalt electrolyte.The bed height,feed flow rate,initial copper (Ⅱ) concentration of the feed,feed temperature and feed pH value which corresponded to the highest removal of copper (Ⅱ) were 7.0 cm with 35 mm of the column diameter,4.5 mL/min,40℃,1000 mg/L and 4.0,respectively.The breakthrough capacity,the saturated capacity of the column and the mass ratio of Cu/Co (g/g) in the saturated resin were correspondingly 16.51 mg/g dry resin,61.72 mg/g dry resin and 37.67 under the optimal experimental conditions.The copper (Ⅱ) breakthrough curves were fitted by the empirical models of Thomas,Yoon-Nelson and Adam-Bohart,respectively.The Thomas model was found to be the most suitable one for predicting how the concentration of copper (Ⅱ) in the effluent changes with the adsorption time.展开更多
基金Project(708049) supported by the Important Item Cultivation Foundation of Scientific Innovation Project of Colleges and Universities of China
文摘A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.
文摘To improve the adsorption properties of chemically modified chitosan, the chelating resin of salicylal chitosan Schiff bases was prepared by the template cross-linking method using Cu(Ⅱ) as template ion and ethylene glycol bisglycidyl ether as cross-linking agent in microwave, and was characterized by IR. The adsorption capacity and selectivity coefficient of the chemically modified chitosan for Cu(Ⅱ), Fe(Ⅲ) and Zn(Ⅱ) were investigated, respectively. The results show that the adsorption capacity of the resin 2.73 mmol/g for Cu(Ⅱ) is bigger than that for other two metal ions, 0.22 mmol/g for Fe(Ⅲ), and 0.42 mmol/g for Zn(Ⅱ), and the selectivity coefficients are as follows: KCu(Ⅱ)/Fe(Ⅲ)=12.4, KCu(Ⅱ)/Zn(Ⅱ)=6.5.
基金Project(51074192)supported by the National Natural Science Foundation of China
文摘PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synthetic aqueous samples. Different generations of PAMAM were used to obtain different chelating resins, PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA. The synthesized resins were characterized by FTIR and elemental analysis. The effect of solution pH, kinetic studies, resin loading capacity, matrix effects etc., on metal ion adsorption to adsorbent phase, were studied by batch method. The PS-1.0G PAMAM-IDA resin was the most excellent adsorbents, with a maximum adsorption capacity of(24.09±1.79) mg/g for Ni2+ ion at pH=7. The interpretation of the equilibrium data was given by Langmuir isotherms model, and the correlation coefficient values for PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA resins were 0.992, 0.994 and 0.987, respectively.
基金Project(2014CB643401)supported by the National Basic Research Program of ChinaProjects(51134007,51474256)supported by the National Natural Science Foundation of ChinaProject(2017TP1001)supported by the Hunan Provincial Science and Technology Plan Project,China
文摘This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height (7.0–14.0 cm),feed flow rate (4.5–9.0 mL/min),initial copper (Ⅱ) concentration of the feed (250–1000 mg/L),feed temperature (25–40 ℃) and the value of pH (2.0–4.0) on the adsorption process of the PS-AMP resin were investigated.The experimental data showed that the PS-AMP resin can deeply eliminate copper (Ⅱ) from the simulated cobalt electrolyte.The bed height,feed flow rate,initial copper (Ⅱ) concentration of the feed,feed temperature and feed pH value which corresponded to the highest removal of copper (Ⅱ) were 7.0 cm with 35 mm of the column diameter,4.5 mL/min,40℃,1000 mg/L and 4.0,respectively.The breakthrough capacity,the saturated capacity of the column and the mass ratio of Cu/Co (g/g) in the saturated resin were correspondingly 16.51 mg/g dry resin,61.72 mg/g dry resin and 37.67 under the optimal experimental conditions.The copper (Ⅱ) breakthrough curves were fitted by the empirical models of Thomas,Yoon-Nelson and Adam-Bohart,respectively.The Thomas model was found to be the most suitable one for predicting how the concentration of copper (Ⅱ) in the effluent changes with the adsorption time.
文摘基于自制的分离富集装置,使用Toyopearl AF-chelate 650M螯合树脂对海水中15种痕量元素(Al、Sc、V、Fe、Co、Ni、Cu、Zn、Ga、Cd、Nd、Pb、Bi、Th和U)进行了分离富集样品前处理技术方法的研究,优化了上样pH、清洗液的类型和用量、洗脱液类型和用量,并联合高分辨率电感耦合等离子质谱仪(HR-ICP-MS)进行准确的测定。结果表明:8.92 mL的海水样品与醋酸−醋酸铵缓冲溶液以1∶1等比例混合(上样pH=5.25)后加载到螯合树脂上,然后使用8.0 mL Milli-Q水清洗基体杂质,最后使用2.25 mL 0.8 mol/L HNO_(3)洗脱。洗脱液加入Rh内标后使用HR-ICP-MS测定。方法全流程空白为0.27(Cd)~52.5(Al)pg,方法检出限为0.06(Cd)~1.67(Zn)ng/L,在0.010~50.0μg/L质量浓度范围内线性关系良好(R^(2)>0.999)。该方法通过分析标准海水GBW(E)080040和国际标准海水CASS-6进行了验证,GBW(E)080040中Cu、Zn、Cd、Pb的测定值均落在标准值范围内,相对误差绝对值<4.1%,相对标准偏差(RSD)<4.1%,15种痕量元素的加标回收率在92.6%~107%之间。CASS-6的测定结果与认证值和报告值一致,RSD<6.4%。本方法前处理过程简单快速、基质去除率高、检出限低、准确度高、精密度好,适用于天然淡水、饮用水、河口近岸以及大洋海水中15种痕量元素的同时准确测定。