The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0...The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0°/45° weftless fabric lay-up and 0°/45° twill fabric lay-up, were quantitatively evaluated by performing the ablation tests with an engine torch. And their ablation discrepancies were analyzed according to the surface characteristic, porosity and thermal diffusivity. The results show that the 0°/45° weftless composite has a fiat eroded surface with no obvious macroscopic pits. Its thickness and mass erosion rates are decreased by about 46.8% and 34.8%, 25.0% and 27.5%, and 17.5% and 19.4% compared with those of the mat, the 0°/90° weftless and the 0°/45° twill composites, respectively. The ablation properties are mainly controlled by the thermo-chemical effect (oxidation), and a little by the thermo-mechanical effect (mechanical denudation). The needling fiber bundles play an important role in accelerating the ablation process and resulting in the heterogeneous ablation.展开更多
Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental resu...Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental results show that the thermal conductivity coefficients of aluminum foams prepared by two different infiltration methods have similar increasing trend with the increase of particle size;along with the reducing porosity,the thermal conductivity coefficients will be enhanced oppositely.However,with the same particle size,the open-celled aluminum foam prepared by the former method has a higher thermal conductivity coefficient obviously.It is largely because that the sample prepared by counter-gravity infiltration casting has a lower void content and better dense crystallization of metal-matrix after the constant pressure process.展开更多
Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea ...Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea Savanna of Nigeria to evaluate the effectiveness of Vetiver Grass(Vetiveria nigritana) Strips(VGS) under different tillage systems. The experiment was split-plot laid out in a randomized complete block design with two replications on 6% slope with 18 runoff plots. Main plot treatments were tillage systems; Manual Clearing(MC), Ploughing(P) and Ploughing plus Harrowing(PH). Subplot treatments were VGS spaced at intervals of 5 m(eight strips) and 10 m(four strips) with the control(no-vetiver). Runoffs and soil losses were collected after each major storm. Chemical analyses of eroded sediments and runoff were determined. Data were analyzed using ANOVA at p<0.05. The results showed that tillage had no significant reduction in runoffs and soil losses, but they were reduced with MC compared with P and PH. Mean total runoff on 5 and 10 m VGS plots were significantly(p<0.05) lower than that of the control by 74.4% and 45.0%, respectively. Corresponding soils loss on 5 and 10 m VGS plots were 27.1% and 53.5%, respectively. Mean NO3-N levels in runoff water were lower under PH plots than those under MC plots by 79.0% and 66.5%, respectively in 2004 and 2006 growing seasons. VGS spaced at 5 m significantly(p<0.05) reduced NO3-N loss than the control by 108.8% in 2004. Nutrients loads of eroded sediments were consistently higher for the control(no-vetiver) plots and least for 5 m VGS plot. Carbon, nitrogen and phosphorus contents of eroded sediments were 90%-92.4%, 83%-83.6% and 97%-97.8%, respectively, and were lower on 5 m than other treatments. Maize grain yield was significantly(p<0.05) affected by both tillage and VGS spacing only in 2005 growing season. P plot produced higher grain yield than MC and PH by 79.9% and 99.1%, respectively. Also, grain yield on VGS plot was significantly(p<0.05) higher on 5 and 10 m VGS plots than the control by 82.2% and 85.4%, respectively. The significant beneficial effect of PH in producing higher yields was dwarfed by the potential danger of soil erosion in the absence of a soil erosion control measure. The results showed that a balance needed to be struck between mechanical clearance and protective measure against soil erosion.展开更多
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona...The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.展开更多
[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infra...[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.展开更多
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2)and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2)phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2)oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2)is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2)particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2)increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2)in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
Tumor microenvironment is composed of the tumor cells,stromal cells,microvascular tissue fluid,constitute small amount of infiltrating cells and cytokines.In recent years,more and more evidence that tumor microenviron...Tumor microenvironment is composed of the tumor cells,stromal cells,microvascular tissue fluid,constitute small amount of infiltrating cells and cytokines.In recent years,more and more evidence that tumor microenvironment play an important role in tumorigenesis.Tumor cells,immune cells and other mesenchymal cells interact and create an immunosuppressive microenvironment through a variety of immunosuppressive factors which vascular endothelial growth factor(VEGF),transformed growth factor-β<sub>1</sub>(TGF-β<sub>1</sub>)and interleukin-10(IL-10)),which suppress immunology functions and promote tumor cells to escape immune surveillance,ultimately leading to tumor growth and metastasis.Dendritic cells(DCs),the most potent antigen presenting cell as now known,play a key role in the anti-tumor immune process.The pre-展开更多
The whole coding region including signal peptidesequence of mouse interleukin-2 (mIL-2) cDNA wasobtained by PCR method and then cloned into the propersites of pUC18 vector. Sequencing analysis throughSanger method (di...The whole coding region including signal peptidesequence of mouse interleukin-2 (mIL-2) cDNA wasobtained by PCR method and then cloned into the propersites of pUC18 vector. Sequencing analysis throughSanger method (dideoxy-mediated chain-terminationmethod) proved the consistency of mIL-2 cDNAsequence with that reported before. The fragment展开更多
Numerous animal experiments and clinical trialshave demonstrated that the effects of systemicantitumor immune responses are closely correlatedwith the infiltration of effector cells, e. g.macrophages, T cells and NK c...Numerous animal experiments and clinical trialshave demonstrated that the effects of systemicantitumor immune responses are closely correlatedwith the infiltration of effector cells, e. g.macrophages, T cells and NK cells, at the site oftumor. In previous studies, we have established theIL-2, IL-4, IL-6 gene-transfected B16F10展开更多
Macrophage inflammatory protein-l, a recentlycharacterized chemokine, consists of two chains (αand β). MIP-lα has been shown to exert strongchemotactic effect on neutrophils, monocytes and Tlymphocytes. In the pres...Macrophage inflammatory protein-l, a recentlycharacterized chemokine, consists of two chains (αand β). MIP-lα has been shown to exert strongchemotactic effect on neutrophils, monocytes and Tlymphocytes. In the present study, the B16 melanomacells were transfected with recombinant adenoviruscontaining MIP-lα gene. The biological characteri-zation of the MIP-1α gene transfected B16 melanomacells was investigated. The level of MIP-1α in thesupernatant of gene-transfected melanoma cells was368±24 ng/ml/10~6/24hr.. By using Boyden chambersystem, this supernatant showed strong chemotacticactivity for NK cells, CD4^+ T cells, CD8^+ T cells orthe freshly isolated peritoneal macrophages in vitro.Though the in vitro growth of the gene-transfected B16 melanoma cclls was not aftered, the in vivogrowth of the tumor cells subcutaneously inoculatedwas significantly inhibited. The infiltration ofinflammatory cells into the tumor mass formed bygene-transfected B16 cells was much more obviousthan that by展开更多
土壤侵蚀是导致水土流失、土地退化和生态系统脆弱等问题的重要因素,径流小区尺度的土壤侵蚀研究有助于深入理解侵蚀机制并制定防治策略。使用CiteSpace软件对1992—2023年间Web of Science数据库收录的径流小区土壤侵蚀研究文献进行了...土壤侵蚀是导致水土流失、土地退化和生态系统脆弱等问题的重要因素,径流小区尺度的土壤侵蚀研究有助于深入理解侵蚀机制并制定防治策略。使用CiteSpace软件对1992—2023年间Web of Science数据库收录的径流小区土壤侵蚀研究文献进行了文献计量分析。通过对4313篇文献的系统研究,分析了土壤侵蚀研究的主要研究机构及作者的合作与贡献情况、关键词共现以及研究热点的转移。结果显示:全球范围内该领域的发文量呈增长趋势,出现了“气候变化”“土地利用”和“黄土高原”等热点话题,美国和中国是发文量最大的国家,其中美国与欧洲国家和机构合作程度较高;研究热点从传统的侵蚀机理和监测预防转向气候变化、土地利用与遥感技术的综合应用;关键词共现与时区分析揭示了生态系统服务和可持续土地管理策略的重要性日益增加。未来关于跨尺度研究和技术应用,特别是在生态系统服务领域和遥感技术与GIS的应用方面将是研究的重点,同时也需要关注土壤侵蚀测量方法的准确性和实用性,以及全球合作在解决土壤侵蚀问题中的重要性。展开更多
Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 6...Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.展开更多
Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration reg...Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration regulation was discussed under sustained and small intensity rainfall.And the infiltration rate of unsaturated soil was proposed according to the saturated infiltration theory.Because of the changing of initial moisture content in depth of slope,the saturated or unsaturated infiltration rate and depth could also be changeable with the sustained rainfall infiltration.Based on the principle of strength reduction,the calculation model of slope safety factor was established under different initial moisture contents and infiltration modes.Then,the slope stability was quantitatively analyzed through software FLAC3D.The calculation results of soil slope engineering show that there is a shorter period for slope stability under different initial moisture contents and unsaturated infiltration ways at the slope wetting front.The stability period of slope is 33.3%according to different initial moisture contents of wetting front less than that of the same initial moisture content of wetting front.And the slope is easier to fail under the unsaturated infiltration.The results agree well with the actual situation under sustained and small intensity rainfall.展开更多
In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfa...In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.展开更多
The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the r...The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the role of carrier gas in chemical vapor infiltration was also discussed. The results shows that whether or not adding N 2 as carrier gas has little influences on the densification behavior of C/C composites with the controlled temperature, the partial pressure of hydrocarbon and the effective residence time of the gas phase remain constant. When the controlled temperature is not less than 1 173 K,using N 2 or H 2 as carrier gas makes pronounced differences in densifying of C/C composites. The average bulk density of C/C composites from C 3H 6 H 2 is eight to ten percent higher than that from C 3H 6 N 2. However, when the controlled temperature is not higher than 1 123 K,the densification rate of C/C composites from C 3H 6 H 2 is much lower than that from C 3H 6 N 2, which implies that effects of carrier gas on densification of C/C composites are closely related to the type of carrier gas and infiltration temperature. At higher temperature, using H 2 as carrier gas is favorable to the densification of C/C composites, while at lower temperature, hydrogen, acting as reactive gas, can inhibit the formation of pyrolytic carbon.展开更多
The ability of a wet swale,constructed in an area of poor soil permeability,to manage runoff from a roadway was monitored through 27 storm events over a period of 8 months.During the monitoring period,the wet swale re...The ability of a wet swale,constructed in an area of poor soil permeability,to manage runoff from a roadway was monitored through 27 storm events over a period of 8 months.During the monitoring period,the wet swale reduced the total runoff volume by 50.4%through exfiltration and evapotranspiration.The wet swale significantly decreased the influent pollutant concentrations,and the effluent mean concentrations of total suspended solids,total phosphorus,chemical oxygen demand,ammonium,oxidized nitrogen,and total nitrogen in the effluent were 31 mg/L,0.10 mg/L,29 mg/L,0.52 mg/L,0.35 mg/L and1.28 mg/L,respectively.Pollutant loads were also substantially reduced from 70%to 85%.Plant uptake played an important role in nutrient removal in the wet swale.Approximately half of the nitrogen(53.8%)and phosphorus(51.5%)that entered the wet swale was incorporated in above-ground plants.It is shown that wet swales are useful for managing runoff from roads in areas of poor soil permeability.展开更多
[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global cl...[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.展开更多
Two-dimensional plain-weave silicon carbide fiber fabric reinforced silicon carbide(2D-SiC/SiC)composites were molded by stacking method and densified through precursor infiltration and pyrolysis(PIP)process.SiC coati...Two-dimensional plain-weave silicon carbide fiber fabric reinforced silicon carbide(2D-SiC/SiC)composites were molded by stacking method and densified through precursor infiltration and pyrolysis(PIP)process.SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition(CVD)technique.Fiber/matrix debonding and relatively long fiber pullouts were observed on the fracture surfaces.Additionally,the flexural strength and elastic modulus of the composites with and without fiber/matrix interphase layer were investigated using three-point bending test and single-edge notched beam test.The results show that the fiber fraction and the porosity of 2D-SiC/SiC composites with and without coating are 27.2%(volume fraction)and 11.1%,and 40.7%(volume fraction)and 7.5%,respectively.And the flexural strength and elastic modulus of 2D-SiC/SiC composites with and without coating are 363.3 MPa and 127.8 GPa,and 180.2 MPa and 97.2 GPa,respectively.With a proper thickness,the coating can effectively adjust the fiber/matrix interface,thus causing a dramatic increase in the mechanical properties of the composites.展开更多
Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and cor...Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution.展开更多
To improve the possible superelevation runoff models for the cycling track design,at first,two existing representative superelevation runoff models used in China were investigated and fitted. Then,an optimization meth...To improve the possible superelevation runoff models for the cycling track design,at first,two existing representative superelevation runoff models used in China were investigated and fitted. Then,an optimization methodology was proposed,which was focused on the track geometry itself,without the consideration of the physical characteristic of the cyclist,assuming that less vertical curvature values correspond to less riding time. The riding performance formulae were obtained with the variables of riding time,riding velocity and vertical curvature of cycling track. Finally,with the refined adjustment on the vertical curvatures with the help of cycling track design software and considering the effect of horizontal alignments,the optimized models were finalized. It is clearly seen that these optimized models take the form of quartic parabola and are verified to achieve 0.005-0.021 s improvement in the event of 200 m time trial.展开更多
基金Project(200202AA305207) supported by the National High Technology Research and Development Program of China
文摘The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0°/45° weftless fabric lay-up and 0°/45° twill fabric lay-up, were quantitatively evaluated by performing the ablation tests with an engine torch. And their ablation discrepancies were analyzed according to the surface characteristic, porosity and thermal diffusivity. The results show that the 0°/45° weftless composite has a fiat eroded surface with no obvious macroscopic pits. Its thickness and mass erosion rates are decreased by about 46.8% and 34.8%, 25.0% and 27.5%, and 17.5% and 19.4% compared with those of the mat, the 0°/90° weftless and the 0°/45° twill composites, respectively. The ablation properties are mainly controlled by the thermo-chemical effect (oxidation), and a little by the thermo-mechanical effect (mechanical denudation). The needling fiber bundles play an important role in accelerating the ablation process and resulting in the heterogeneous ablation.
基金Project(51304254) supported by the National Natural Science Foundation of ChinaProject(2013GK4064) supported by the Strategic Emerging Industry Program of the Ministry of Science and Technology of Hunan Province,China
文摘Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental results show that the thermal conductivity coefficients of aluminum foams prepared by two different infiltration methods have similar increasing trend with the increase of particle size;along with the reducing porosity,the thermal conductivity coefficients will be enhanced oppositely.However,with the same particle size,the open-celled aluminum foam prepared by the former method has a higher thermal conductivity coefficient obviously.It is largely because that the sample prepared by counter-gravity infiltration casting has a lower void content and better dense crystallization of metal-matrix after the constant pressure process.
文摘Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea Savanna of Nigeria to evaluate the effectiveness of Vetiver Grass(Vetiveria nigritana) Strips(VGS) under different tillage systems. The experiment was split-plot laid out in a randomized complete block design with two replications on 6% slope with 18 runoff plots. Main plot treatments were tillage systems; Manual Clearing(MC), Ploughing(P) and Ploughing plus Harrowing(PH). Subplot treatments were VGS spaced at intervals of 5 m(eight strips) and 10 m(four strips) with the control(no-vetiver). Runoffs and soil losses were collected after each major storm. Chemical analyses of eroded sediments and runoff were determined. Data were analyzed using ANOVA at p<0.05. The results showed that tillage had no significant reduction in runoffs and soil losses, but they were reduced with MC compared with P and PH. Mean total runoff on 5 and 10 m VGS plots were significantly(p<0.05) lower than that of the control by 74.4% and 45.0%, respectively. Corresponding soils loss on 5 and 10 m VGS plots were 27.1% and 53.5%, respectively. Mean NO3-N levels in runoff water were lower under PH plots than those under MC plots by 79.0% and 66.5%, respectively in 2004 and 2006 growing seasons. VGS spaced at 5 m significantly(p<0.05) reduced NO3-N loss than the control by 108.8% in 2004. Nutrients loads of eroded sediments were consistently higher for the control(no-vetiver) plots and least for 5 m VGS plot. Carbon, nitrogen and phosphorus contents of eroded sediments were 90%-92.4%, 83%-83.6% and 97%-97.8%, respectively, and were lower on 5 m than other treatments. Maize grain yield was significantly(p<0.05) affected by both tillage and VGS spacing only in 2005 growing season. P plot produced higher grain yield than MC and PH by 79.9% and 99.1%, respectively. Also, grain yield on VGS plot was significantly(p<0.05) higher on 5 and 10 m VGS plots than the control by 82.2% and 85.4%, respectively. The significant beneficial effect of PH in producing higher yields was dwarfed by the potential danger of soil erosion in the absence of a soil erosion control measure. The results showed that a balance needed to be struck between mechanical clearance and protective measure against soil erosion.
文摘The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.
文摘[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2)and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2)phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2)oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2)is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2)particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2)increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2)in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.
文摘Tumor microenvironment is composed of the tumor cells,stromal cells,microvascular tissue fluid,constitute small amount of infiltrating cells and cytokines.In recent years,more and more evidence that tumor microenvironment play an important role in tumorigenesis.Tumor cells,immune cells and other mesenchymal cells interact and create an immunosuppressive microenvironment through a variety of immunosuppressive factors which vascular endothelial growth factor(VEGF),transformed growth factor-β<sub>1</sub>(TGF-β<sub>1</sub>)and interleukin-10(IL-10)),which suppress immunology functions and promote tumor cells to escape immune surveillance,ultimately leading to tumor growth and metastasis.Dendritic cells(DCs),the most potent antigen presenting cell as now known,play a key role in the anti-tumor immune process.The pre-
文摘The whole coding region including signal peptidesequence of mouse interleukin-2 (mIL-2) cDNA wasobtained by PCR method and then cloned into the propersites of pUC18 vector. Sequencing analysis throughSanger method (dideoxy-mediated chain-terminationmethod) proved the consistency of mIL-2 cDNAsequence with that reported before. The fragment
文摘Numerous animal experiments and clinical trialshave demonstrated that the effects of systemicantitumor immune responses are closely correlatedwith the infiltration of effector cells, e. g.macrophages, T cells and NK cells, at the site oftumor. In previous studies, we have established theIL-2, IL-4, IL-6 gene-transfected B16F10
文摘Macrophage inflammatory protein-l, a recentlycharacterized chemokine, consists of two chains (αand β). MIP-lα has been shown to exert strongchemotactic effect on neutrophils, monocytes and Tlymphocytes. In the present study, the B16 melanomacells were transfected with recombinant adenoviruscontaining MIP-lα gene. The biological characteri-zation of the MIP-1α gene transfected B16 melanomacells was investigated. The level of MIP-1α in thesupernatant of gene-transfected melanoma cells was368±24 ng/ml/10~6/24hr.. By using Boyden chambersystem, this supernatant showed strong chemotacticactivity for NK cells, CD4^+ T cells, CD8^+ T cells orthe freshly isolated peritoneal macrophages in vitro.Though the in vitro growth of the gene-transfected B16 melanoma cclls was not aftered, the in vivogrowth of the tumor cells subcutaneously inoculatedwas significantly inhibited. The infiltration ofinflammatory cells into the tumor mass formed bygene-transfected B16 cells was much more obviousthan that by
文摘土壤侵蚀是导致水土流失、土地退化和生态系统脆弱等问题的重要因素,径流小区尺度的土壤侵蚀研究有助于深入理解侵蚀机制并制定防治策略。使用CiteSpace软件对1992—2023年间Web of Science数据库收录的径流小区土壤侵蚀研究文献进行了文献计量分析。通过对4313篇文献的系统研究,分析了土壤侵蚀研究的主要研究机构及作者的合作与贡献情况、关键词共现以及研究热点的转移。结果显示:全球范围内该领域的发文量呈增长趋势,出现了“气候变化”“土地利用”和“黄土高原”等热点话题,美国和中国是发文量最大的国家,其中美国与欧洲国家和机构合作程度较高;研究热点从传统的侵蚀机理和监测预防转向气候变化、土地利用与遥感技术的综合应用;关键词共现与时区分析揭示了生态系统服务和可持续土地管理策略的重要性日益增加。未来关于跨尺度研究和技术应用,特别是在生态系统服务领域和遥感技术与GIS的应用方面将是研究的重点,同时也需要关注土壤侵蚀测量方法的准确性和实用性,以及全球合作在解决土壤侵蚀问题中的重要性。
基金Project(2009ZM0296) supported by the Fundamental Research Funds for the Central Universities in China
文摘Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.
基金Project(2010(A)06-b)supported by the Scientific Research Fund of Yunnan Provincial Transport Department of ChinaProject(51108293)supported by the National Natural Science Foundation of China+1 种基金Project(2013PY37)supported by the Cultivated Foundation of Taizhou University of ChinaProject(LY13E080008)supported by the Zhejiang Provincial Natural Science Foundation of China
文摘Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration regulation was discussed under sustained and small intensity rainfall.And the infiltration rate of unsaturated soil was proposed according to the saturated infiltration theory.Because of the changing of initial moisture content in depth of slope,the saturated or unsaturated infiltration rate and depth could also be changeable with the sustained rainfall infiltration.Based on the principle of strength reduction,the calculation model of slope safety factor was established under different initial moisture contents and infiltration modes.Then,the slope stability was quantitatively analyzed through software FLAC3D.The calculation results of soil slope engineering show that there is a shorter period for slope stability under different initial moisture contents and unsaturated infiltration ways at the slope wetting front.The stability period of slope is 33.3%according to different initial moisture contents of wetting front less than that of the same initial moisture content of wetting front.And the slope is easier to fail under the unsaturated infiltration.The results agree well with the actual situation under sustained and small intensity rainfall.
基金Project(50678175)supported by the National Natural Science Foundation of China
文摘In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.
文摘The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the role of carrier gas in chemical vapor infiltration was also discussed. The results shows that whether or not adding N 2 as carrier gas has little influences on the densification behavior of C/C composites with the controlled temperature, the partial pressure of hydrocarbon and the effective residence time of the gas phase remain constant. When the controlled temperature is not less than 1 173 K,using N 2 or H 2 as carrier gas makes pronounced differences in densifying of C/C composites. The average bulk density of C/C composites from C 3H 6 H 2 is eight to ten percent higher than that from C 3H 6 N 2. However, when the controlled temperature is not higher than 1 123 K,the densification rate of C/C composites from C 3H 6 H 2 is much lower than that from C 3H 6 N 2, which implies that effects of carrier gas on densification of C/C composites are closely related to the type of carrier gas and infiltration temperature. At higher temperature, using H 2 as carrier gas is favorable to the densification of C/C composites, while at lower temperature, hydrogen, acting as reactive gas, can inhibit the formation of pyrolytic carbon.
基金Project(2011ZX07303-002) supported by National Water Pollution Control and Management Technology Major Projects,China
文摘The ability of a wet swale,constructed in an area of poor soil permeability,to manage runoff from a roadway was monitored through 27 storm events over a period of 8 months.During the monitoring period,the wet swale reduced the total runoff volume by 50.4%through exfiltration and evapotranspiration.The wet swale significantly decreased the influent pollutant concentrations,and the effluent mean concentrations of total suspended solids,total phosphorus,chemical oxygen demand,ammonium,oxidized nitrogen,and total nitrogen in the effluent were 31 mg/L,0.10 mg/L,29 mg/L,0.52 mg/L,0.35 mg/L and1.28 mg/L,respectively.Pollutant loads were also substantially reduced from 70%to 85%.Plant uptake played an important role in nutrient removal in the wet swale.Approximately half of the nitrogen(53.8%)and phosphorus(51.5%)that entered the wet swale was incorporated in above-ground plants.It is shown that wet swales are useful for managing runoff from roads in areas of poor soil permeability.
基金Science and Technology Major Project of Tibetan Autonomous Region of China(XZ202201ZD0005G02)National Natural Science Foundation of China(42277353)Chengdu Science and Technology Project(2022-YF05-01162-SN)。
文摘[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.
基金Project(NCET-07-0228)support by the New Century Excellent Talents in University
文摘Two-dimensional plain-weave silicon carbide fiber fabric reinforced silicon carbide(2D-SiC/SiC)composites were molded by stacking method and densified through precursor infiltration and pyrolysis(PIP)process.SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition(CVD)technique.Fiber/matrix debonding and relatively long fiber pullouts were observed on the fracture surfaces.Additionally,the flexural strength and elastic modulus of the composites with and without fiber/matrix interphase layer were investigated using three-point bending test and single-edge notched beam test.The results show that the fiber fraction and the porosity of 2D-SiC/SiC composites with and without coating are 27.2%(volume fraction)and 11.1%,and 40.7%(volume fraction)and 7.5%,respectively.And the flexural strength and elastic modulus of 2D-SiC/SiC composites with and without coating are 363.3 MPa and 127.8 GPa,and 180.2 MPa and 97.2 GPa,respectively.With a proper thickness,the coating can effectively adjust the fiber/matrix interface,thus causing a dramatic increase in the mechanical properties of the composites.
文摘Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution.
基金Project(BZ2008056) supported by Jiangsu International Cooperative Research Program in 2008, China
文摘To improve the possible superelevation runoff models for the cycling track design,at first,two existing representative superelevation runoff models used in China were investigated and fitted. Then,an optimization methodology was proposed,which was focused on the track geometry itself,without the consideration of the physical characteristic of the cyclist,assuming that less vertical curvature values correspond to less riding time. The riding performance formulae were obtained with the variables of riding time,riding velocity and vertical curvature of cycling track. Finally,with the refined adjustment on the vertical curvatures with the help of cycling track design software and considering the effect of horizontal alignments,the optimized models were finalized. It is clearly seen that these optimized models take the form of quartic parabola and are verified to achieve 0.005-0.021 s improvement in the event of 200 m time trial.