设A是有单位元的Banach代数,给定a,b∈A,记2×2上三角矩阵Mc=(a c 0 b)∈M2(A),其中c∈A.证明了στ(a)∪στ(b)=στ(Mc)∪W,其中当στ=σ时,Wσ(a)∩σ(b)是σ(Mc)的某些洞的并;当στ=σl时,Wσr(a)∩(σl(b)\σl(a))包含...设A是有单位元的Banach代数,给定a,b∈A,记2×2上三角矩阵Mc=(a c 0 b)∈M2(A),其中c∈A.证明了στ(a)∪στ(b)=στ(Mc)∪W,其中当στ=σ时,Wσ(a)∩σ(b)是σ(Mc)的某些洞的并;当στ=σl时,Wσr(a)∩(σl(b)\σl(a))包含在σl(a)的某些洞的并中,也包含在σl(Mc)的某些洞的并中;当στ=σr时,Wσl(b)∩(σr(a)\σr(b))包含在σr(b)的某些洞的并中,也包含在σr(Mc)的某些洞的并中.展开更多
文摘设A是有单位元的Banach代数,给定a,b∈A,记2×2上三角矩阵Mc=(a c 0 b)∈M2(A),其中c∈A.证明了στ(a)∪στ(b)=στ(Mc)∪W,其中当στ=σ时,Wσ(a)∩σ(b)是σ(Mc)的某些洞的并;当στ=σl时,Wσr(a)∩(σl(b)\σl(a))包含在σl(a)的某些洞的并中,也包含在σl(Mc)的某些洞的并中;当στ=σr时,Wσl(b)∩(σr(a)\σr(b))包含在σr(b)的某些洞的并中,也包含在σr(Mc)的某些洞的并中.