期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于IGWO-GMDH的有效波高预测模型研究
1
作者 蒋仲廉 梅乃文 +2 位作者 郭建群 翁炳昶 初晓 《中国航海》 北大核心 2025年第2期25-31,共7页
海洋波浪具有显著的随机性、非线性特征,有效波高预测对于船舶航行安全、航路规划等具有重要意义。改进灰狼算法(GWO)搜索机制,并将其与基于分组数据处理方法(GMDH)模型相耦合,提出一种有效波高预测模型;结合波高实测数据集验证预测模... 海洋波浪具有显著的随机性、非线性特征,有效波高预测对于船舶航行安全、航路规划等具有重要意义。改进灰狼算法(GWO)搜索机制,并将其与基于分组数据处理方法(GMDH)模型相耦合,提出一种有效波高预测模型;结合波高实测数据集验证预测模型精度,探讨模型不同输入参数的权重占比。研究结果表明:相较于经典GMDH模型,所建立的IGWO-GMDH模型预测精度更高,均方误差减小2.65%、均方根误差降低约1.35%、标准差降低2.14%;波浪特征参数与风场数据的权重占比较高,两者组合对于模型预测精度影响较大。所构建的IGWO-GMDH模型可预测分析有效波高,为船舶航行安全、航路规划与优化等研究提供理论支撑。 展开更多
关键词 有效波高 分组数据处理模型 改进灰狼优化算法 搜索机制优化
在线阅读 下载PDF
基于GA-GMDH算法的离心泵退化识别
2
作者 孙广西 曹辉 +1 位作者 张子威 马振豪 《中国舰船研究》 CSCD 北大核心 2024年第5期254-262,共9页
[目的]为实时监测离心泵的健康状态,提出一种可实时识别离心泵退化状态的模型。[方法]首先,基于离心泵的运行参数和退化机理,利用主客观相结合的组合赋权模型来计算组合权重,进而构建离心泵退化过程中的健康指标;然后,基于现有离心泵的... [目的]为实时监测离心泵的健康状态,提出一种可实时识别离心泵退化状态的模型。[方法]首先,基于离心泵的运行参数和退化机理,利用主客观相结合的组合赋权模型来计算组合权重,进而构建离心泵退化过程中的健康指标;然后,基于现有离心泵的退化数据,提出基于遗传优化-数据分组处理(GA-GMDH)算法的离心泵退化监测模型。[结果]GA-GMDH监测模型的可靠性较高,其健康指标输出值与真实值的均方根误差为0.029216,依据该模型输出结果进行退化状态识别的精度为93.333%。[结论]研究成果可为离心泵的健康状态监测以及维护运营管理提供参考。 展开更多
关键词 离心泵 组合赋权 健康指标 数据分组处理方法 退化状态识别
在线阅读 下载PDF
基于GMDH的组合预测模型应用研究 被引量:5
3
作者 何跃 杨剑 徐玖平 《计算机应用》 CSCD 北大核心 2007年第2期456-458,共3页
应用数据处理的分组方法(GMDH)多层算法、GMDH自回归算法、多维AC算法、单维AC算法,建立了基于GMDH的工业增加值预测模型,在此基础上建立了最优线性组合预测模型。实验证明本文方法不仅改善了模型对数据样本的拟合精度,而且提高了模型... 应用数据处理的分组方法(GMDH)多层算法、GMDH自回归算法、多维AC算法、单维AC算法,建立了基于GMDH的工业增加值预测模型,在此基础上建立了最优线性组合预测模型。实验证明本文方法不仅改善了模型对数据样本的拟合精度,而且提高了模型的预测能力。 展开更多
关键词 数据处理的分组方法模型 相似体合成算法模型 组合预测 工业增加值
在线阅读 下载PDF
基于GMDH的卷烟工艺参数-指标关系模型研究 被引量:3
4
作者 唐云岚 高妍方 陈英武 《计算机工程与应用》 CSCD 北大核心 2008年第28期13-14,36,共3页
通过对烟草加工中工艺参数与质量指标之间的关系研究,提出采用自组织数据挖掘方法建立相应的关系模型,并利用该模型预测质量指标取值。通过与多元线性回归模型的预测值对比,证明了该方法的有效性。
关键词 自组织数据挖掘 卷烟 制丝工艺 工艺参数 数据分组处理方法
在线阅读 下载PDF
中长期负荷预测的GMDH多结构自动搜索模型 被引量:3
5
作者 林佳 程浩忠 +2 位作者 顾洁 杨宗麟 王峥 《电力系统及其自动化学报》 CSCD 北大核心 2010年第5期41-45,共5页
针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间... 针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。 展开更多
关键词 中长期电力负荷预测 数据分组处理 多结构突变 自动搜索算法 华东地区
在线阅读 下载PDF
基于GMDH的迁移特征选择模型研究
6
作者 李红梅 贺昌政 肖进 《计算机应用研究》 CSCD 北大核心 2012年第3期829-832,共4页
将迁移学习和数据分组处理算法集成起来,提出了一种基于数据分组处理算法的迁移特征选择(GM-DH-TFS)模型。在UCI的四个数据集上,将GMDH-TFS模型与以全部特征作分类(FULL)的结果以及常用的特征选择模型(前向监督特征选择模型(SFFS)、前... 将迁移学习和数据分组处理算法集成起来,提出了一种基于数据分组处理算法的迁移特征选择(GM-DH-TFS)模型。在UCI的四个数据集上,将GMDH-TFS模型与以全部特征作分类(FULL)的结果以及常用的特征选择模型(前向监督特征选择模型(SFFS)、前向半监督特征选择模型(FW-SemiFS)和迁移特征选择模型(TFS))作比较实验,结果表明,GMDH-TFS在特征选择方面比其他四种方法有更好的效果,在小样本情况下也得到了同样的结果。GMDH-TFS模型可以在数据分布不一致的情况下进行特征选择,同时面对数据匮乏也能取得理想的效果。 展开更多
关键词 特征选择 迁移学习 数据分组处理
在线阅读 下载PDF
基于改进GMDH算法的路口短时交通流量预测 被引量:4
7
作者 王明月 王晶 +1 位作者 齐瑞云 陈复扬 《计算机应用》 CSCD 北大核心 2015年第A01期101-103,134,共4页
城市交通是一个复杂的大系统,实时而准确的短时交通流量预测,可以为城市交通诱导和控制提供科学支持。针对GMDH算法建模泛化能力差的问题,结合集成学习的思想对GMDH算法进行改进,并将改进的算法应用到短时交通流量模型的构建中。结果表... 城市交通是一个复杂的大系统,实时而准确的短时交通流量预测,可以为城市交通诱导和控制提供科学支持。针对GMDH算法建模泛化能力差的问题,结合集成学习的思想对GMDH算法进行改进,并将改进的算法应用到短时交通流量模型的构建中。结果表明,该方法可以有效地对短时交通流量进行预测,建模平均相对误差为1.10%,预测相对误差为0.58%。 展开更多
关键词 智能交通系统 短时 交通流量 gmdh 预测
在线阅读 下载PDF
一种选择性GMDH网络集成算法 被引量:1
8
作者 曹鹏 李金龙 +1 位作者 张泽明 王煦法 《计算机应用》 CSCD 北大核心 2006年第11期2554-2557,共4页
提出一种新的GMDH网络的选择性集成算法,通过对构造GMDH网络个体的训练样本进行惩罚性划分,产生具有差异性的GMDH网络集合,再利用遗传算法从中选择最优GMDH网络子集进行集成。实验结果与分析表明,与GMDH网络的整体集成和单个GMDH网络以... 提出一种新的GMDH网络的选择性集成算法,通过对构造GMDH网络个体的训练样本进行惩罚性划分,产生具有差异性的GMDH网络集合,再利用遗传算法从中选择最优GMDH网络子集进行集成。实验结果与分析表明,与GMDH网络的整体集成和单个GMDH网络以及传统的BP神经网络集成相比,GMDH网络的选择性集成在性能上具有明显的优势。 展开更多
关键词 gmdh 惩罚性划分 选择性集成
在线阅读 下载PDF
基于解耦型GMDH的车身材料参数反求 被引量:1
9
作者 殷为洋 王琥 +1 位作者 冯慧 汤龙 《中国机械工程》 EI CAS CSCD 北大核心 2015年第9期1215-1221,共7页
动态载荷作用时,具有应变率效应的材料在碰撞仿真中会展现出不同于静态载荷时的性能,准确的材料参数是获得可靠仿真结果的前提。主流的近似模型优化方法忽略了对变量间耦合关系的判定,造成近似模型中存在不必要的耦合项,增大误差项所占... 动态载荷作用时,具有应变率效应的材料在碰撞仿真中会展现出不同于静态载荷时的性能,准确的材料参数是获得可靠仿真结果的前提。主流的近似模型优化方法忽略了对变量间耦合关系的判定,造成近似模型中存在不必要的耦合项,增大误差项所占比重,降低模型的效率和泛化能力。为此,提出了解耦型数据分组处理方法(GMDH),在建模初期判断变量之间的耦合关系,进而确定模型的耦合项。在高维非线性函数测试中,该方法表现出优良的建模性能;将该方法与台车试验结合,反求出两种材料构成的拼焊板参数,与试验结果的对比表明,该反求方法具有较高的精度。 展开更多
关键词 应变率效应 耦合关系 解耦型数据分组处理方法(gmdh) 近似模型
在线阅读 下载PDF
基于ARMA-GMDH的水利工程变形预测模型 被引量:3
10
作者 李莉贞 曾志全 +2 位作者 黄勇 杨杰 宋锦焘 《水资源与水工程学报》 CSCD 北大核心 2022年第1期164-170,共7页
变形监测数据是定量评价水利工程结构安全的重要依据。水利工程变形数据是一种典型的非平稳信号,同时包含线性成分与非线性成分。针对水利工程变形的线性成分和非线性成分特征,分别利用针对线性信号的自回归移动平均模型和非线性信号的... 变形监测数据是定量评价水利工程结构安全的重要依据。水利工程变形数据是一种典型的非平稳信号,同时包含线性成分与非线性成分。针对水利工程变形的线性成分和非线性成分特征,分别利用针对线性信号的自回归移动平均模型和非线性信号的数据分组处理方法,构建了一种基于ARMA-GMDH的组合预测模型对水利工程的变形进行预测。工程实例表明,该方法可以有效地对水利工程变形的线性及非线性成分进行预测,与多个预测方法结果进行对比发现所提出的组合模型具有较高的预测精度,且与实测数据具有相似的变形趋势,可以分别对变形的线性及非线性成分规律进行分析,综合判断结构的变形趋势和安全性态,因此具有一定的工程应用价值。 展开更多
关键词 水利工程变形 监控模型 预测分析 gmdh算法 ARMA算法
在线阅读 下载PDF
基于GMDH算法的配电网线损数据预处理研究 被引量:14
11
作者 何艺 陈俊 《电力系统保护与控制》 EI CSCD 北大核心 2015年第9期42-46,共5页
针对当前配电网线损计算的特点及数据存在缺失、异常等情况,基于数据分组处理算法(GMDH)建立了配电网线损缺失数据的预处理模型,实现对线损缺失数据的预处理。模型基于最邻近算法确定因变量和自变量缺失值的上下限,并进行随机插补,建立... 针对当前配电网线损计算的特点及数据存在缺失、异常等情况,基于数据分组处理算法(GMDH)建立了配电网线损缺失数据的预处理模型,实现对线损缺失数据的预处理。模型基于最邻近算法确定因变量和自变量缺失值的上下限,并进行随机插补,建立所有变量的数据分组处理模型,寻找最优复杂度模型,计算缺失值并进行迭代循环。算例结果表明,模型计算结果误差小、运算速度快,对缺失的线损数据能进行有效的动态更新,提升了数据质量,优化线损计算分析结果。 展开更多
关键词 配电网线损 数据预处理 数据分组处理算法 最邻近算法 最优复杂度
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
12
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(gmdh algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
13
作者 张晨 汪立新 孔祥玉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期1336-1345,共10页
针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入K... 针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入KPCA并降低特征向量维度.将特征向量代入GMDH神经网络训练,区分训练集和验证集以确定网络权值和网络结构,实现HRG温度漂移的建模与补偿.实验结果表明,单一样本预测时,所提方法预测效果明显好于传统多项式模型;多样本预测时,在4种不同训练样本下,所提方法相比传统多项式模型精度分别提升了48.5%、54.0%、56.3%、68.4%,相比GMDH模型分别提升了3.6%、5.1%、3.8%、8.8%.所提方法能够有效提高HRG在变温工况下的测量精度. 展开更多
关键词 半球谐振陀螺(HRG) 核主成分分析(KPCA) 数据处理组合方法(gmdh) 温度建模与补偿 测量精度
在线阅读 下载PDF
人工神经网络BP算法的改进及其应用 被引量:106
14
作者 李晓峰 刘光中 《四川大学学报(工程科学版)》 EI CAS CSCD 2000年第2期105-109,共5页
:对传统的BP算法进行了改进 ,提出了BP神经网络动态全参数自调整学习算法 ,又将其编制成计算机程序 ,使得隐层节点和学习速率的选取全部动态实现 ,减少了人为因素的干预 ,改善了学习速率和网络的适应能力。计算结果表明 :BP神经网络动... :对传统的BP算法进行了改进 ,提出了BP神经网络动态全参数自调整学习算法 ,又将其编制成计算机程序 ,使得隐层节点和学习速率的选取全部动态实现 ,减少了人为因素的干预 ,改善了学习速率和网络的适应能力。计算结果表明 :BP神经网络动态全参数自调整算法较传统的方法优越 ,训练后的神经网络模型不仅能准确地拟合训练值 。 展开更多
关键词 神经网络 BP算法 自调整 自组织方法 学习速率
在线阅读 下载PDF
基于数据自组织挖掘的机械设备状态退化预警方法 被引量:4
15
作者 胡瑾秋 张来斌 +1 位作者 胡春艳 李文强 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期142-147,共6页
在设备状态监测过程中引入数据自组织挖掘思想,建立一种设备状态退化预警方法。采用隐马尔科夫模型(HMM)对设备的早期退化状态进行准确辨识和评估,并进一步建立设备退化过程的自组织预测模型。案例分析中将该方法应用到旋转机械轴承运... 在设备状态监测过程中引入数据自组织挖掘思想,建立一种设备状态退化预警方法。采用隐马尔科夫模型(HMM)对设备的早期退化状态进行准确辨识和评估,并进一步建立设备退化过程的自组织预测模型。案例分析中将该方法应用到旋转机械轴承运行状态退化的预警过程中。结果表明,基于自组织数据挖掘的设备状态退化趋势预测方法预测效果准确、客观性强,预测值与实际值的拟合程度高,相对误差仅为3.1%。新方法能够预测设备未来时间段的退化状态及其发展趋势,提前给出预警信息,有效地制定预知维修计划,及时采取预防措施,防止因设备突发失效引起非计划停机造成生产和经济损失。 展开更多
关键词 数据自组织挖掘 隐马尔科夫模型 数据分组处理方法 状态退化预警
在线阅读 下载PDF
水资源需求的驱动力分析及其预测 被引量:5
16
作者 刘德地 陈晓宏 楼章华 《水利水电技术》 CSCD 北大核心 2010年第3期1-5,共5页
根据水资源需求系统的特点和所涉及的范围,以水资源需求势能概念为基础,分析了水资源需求驱动力的组成,并引进自组织数据挖掘的方法来构建驱动力合成模型,以广东省东江流域为例,对模型进行了验证分析。研究结果表明:水资源需求的驱动力... 根据水资源需求系统的特点和所涉及的范围,以水资源需求势能概念为基础,分析了水资源需求驱动力的组成,并引进自组织数据挖掘的方法来构建驱动力合成模型,以广东省东江流域为例,对模型进行了验证分析。研究结果表明:水资源需求的驱动力主要由自然条件力、社会经济力和水资源管理政策力三力合成;基于自组织数据挖掘的水资源需求量预测模型可有效地模拟和预测出水资源需求变化过程,这为研究水资源需求预测提供了一种新的方法。 展开更多
关键词 水资源需求 驱动力 数据分组处理法 预测 东江流域
在线阅读 下载PDF
自组织模式识别与经济预测 被引量:5
17
作者 俞海 贺昌政 何跃 《电子科技大学学报》 EI CAS CSCD 北大核心 2003年第1期104-108,共5页
基于自组织数据挖掘方法与经济预测原则,提出了自组织模式识别方法。该方法的主要特点是在几个相似模式的合成中使用了数据分组处理方法自动合成技术,实际应用于经济预测时比传统意义上的预测方法方便。实例表明了它在经济预测中的有效... 基于自组织数据挖掘方法与经济预测原则,提出了自组织模式识别方法。该方法的主要特点是在几个相似模式的合成中使用了数据分组处理方法自动合成技术,实际应用于经济预测时比传统意义上的预测方法方便。实例表明了它在经济预测中的有效性。同时,使用增加同类经济对象样本数据的方法,解决了样本数据不足的问题. 展开更多
关键词 自组织数据挖掘 经济预测 模式识别 相似模式 数据分组处理方法 工作原理
在线阅读 下载PDF
基于分组数据处理神经网络气动人工肌肉迟滞特性 被引量:7
18
作者 崔霞 施光林 沈伟 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第6期931-935,共5页
气动人工肌肉的动态特性中存在着非常复杂的迟滞现象.目前对其迟滞特性的研究很不充分,甚至对其输入空间都难以确定.为此,建立了单自由度气动人工肌肉实验平台,利用分组数据处理神经网络独特的自组织特性,运用数据挖掘技术探索气动人工... 气动人工肌肉的动态特性中存在着非常复杂的迟滞现象.目前对其迟滞特性的研究很不充分,甚至对其输入空间都难以确定.为此,建立了单自由度气动人工肌肉实验平台,利用分组数据处理神经网络独特的自组织特性,运用数据挖掘技术探索气动人工肌肉迟滞特性的输入空间.将自适应模糊小脑模型神经网络引入滑模控制,基于已确定的输入空间,在每个采样周期逼近迟滞力不断变化的动态值,在线实时补偿迟滞力的影响.实验结果验证了输入空间选取的合理性和有效性. 展开更多
关键词 分组数据处理神经网络 气动人工肌肉 迟滞力 输入空间
在线阅读 下载PDF
基于自组织数据挖掘的电子商务客户流失预测模型 被引量:12
19
作者 张秋菊 朱帮助 《企业经济》 CSSCI 北大核心 2011年第1期95-99,共5页
为解决电子商务客户流失预测中的高维、非线性问题,本文将自组织数据挖掘理论(SODM)引入客户流失预测,提出一种新颖的基于自组织数据挖掘的电子商务客户流失预测模型。该方法将自组织数据挖掘中的客观系统分析算法(OSA)和改进分组数据... 为解决电子商务客户流失预测中的高维、非线性问题,本文将自组织数据挖掘理论(SODM)引入客户流失预测,提出一种新颖的基于自组织数据挖掘的电子商务客户流失预测模型。该方法将自组织数据挖掘中的客观系统分析算法(OSA)和改进分组数据处理网络(GMDH)集成起来进行电子商务客户流失预测。首先利用OSA算法选择出重要的电子商务客户流失关键属性,然后将训练样本送入改进GMDH网络进行学习和训练,进而对测试样本客户流失状态进行判别。将该方法应用于某网上商店客户流失预测实证分析,预测结果验证了该方法对包含多种因素影响的电子商务客户流失预测具有优势,基于自组织数据挖掘的电子商务客户流失预测模型具有较强的实用性和可操作性。 展开更多
关键词 客户流失预测 自组织数据挖掘 客观系统分析 数据分组处理 电子商务
在线阅读 下载PDF
动态全参数自调整BP神经网络预测模型的建立 被引量:13
20
作者 李晓峰 《预测》 CSSCI 2001年第3期69-71,共3页
本文从减少干预的思想出发 ,提出了 BP神经网络动态全参数自调整学习算法 ,使得隐层节点和学习速率的选取全部动态实现 ,改善了学习速率和网络的适应能力。最后又将改善后的 BP神经网络应用到经济领域中 ,得到了比常规经济学模型更优的... 本文从减少干预的思想出发 ,提出了 BP神经网络动态全参数自调整学习算法 ,使得隐层节点和学习速率的选取全部动态实现 ,改善了学习速率和网络的适应能力。最后又将改善后的 BP神经网络应用到经济领域中 ,得到了比常规经济学模型更优的效果。 展开更多
关键词 神经网络 BP算法 自调整 自组织方法 预测模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部