Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past...Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.展开更多
For a texture image, by recognizining the class of every pixel of the image, it can be partitioned into disjoint regions of uniform texture. This paper proposed a texture image classification algorithm based on Gabor ...For a texture image, by recognizining the class of every pixel of the image, it can be partitioned into disjoint regions of uniform texture. This paper proposed a texture image classification algorithm based on Gabor wavelet. In this algorithm, characteristic of every image is obtained through every pixel and its neighborhood of this image. And this algorithm can achieve the information transform between different sizes of neighborhood.Experiments on standard Brodatz texture image dataset show that our proposed algorithm can achieve good classification rates.展开更多
文摘Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.
基金Foundation item: Supported by the National Natural Science Foundation of China(61071189) Supported by the Key Project of Science and Technology of the Education Department of Henan Province(14A120009) Supported by the Program Young Scholar of the Peoples Republic of Henan Province China(2013GGJS-027)
文摘For a texture image, by recognizining the class of every pixel of the image, it can be partitioned into disjoint regions of uniform texture. This paper proposed a texture image classification algorithm based on Gabor wavelet. In this algorithm, characteristic of every image is obtained through every pixel and its neighborhood of this image. And this algorithm can achieve the information transform between different sizes of neighborhood.Experiments on standard Brodatz texture image dataset show that our proposed algorithm can achieve good classification rates.