期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Exploring the evolution of texture and properties of ultrafine copper wire during high strain drawing process
1
作者 LIU Jin-song ZHOU Yan +3 位作者 WANG Song-wei CHEN Shuai-feng SONG Hong-wu ZHANG Shi-hong 《Journal of Central South University》 2025年第6期1973-1994,共22页
The ultrafine copper wire with a diameter of 18μm is prepared via cold drawing process from the single crystal downcast billet(Φ8 mm),taking a drawing strain to 12.19.In this paper,in-depth investigation of the micr... The ultrafine copper wire with a diameter of 18μm is prepared via cold drawing process from the single crystal downcast billet(Φ8 mm),taking a drawing strain to 12.19.In this paper,in-depth investigation of the microstructure feature,texture evolution,mechanical properties,and electrical conductivity of ultrafine wires ranging fromΦ361μm toΦ18μm is performed.Specially,the microstructure feature and texture type covering the whole longitudinal section of ultrafine wires are elaborately characterized.The results show that the average lamella thickness decreases from 1.63μm to 102 nm during the drawing process.Whereas,inhomogeneous texture evolution across different wire sections was observed.The main texture types of copper wires are comprised of<111>,<001>and<112>orientations.Specifically,the peripheral region is primarily dominated by<111>and<112>,while the central region is dominated by<001>and<111>.As the drawing strain increases,the volume fraction of hard orientation<111>with low Schmid factor increases,where notably higher fraction of<111>is resulted from the consumption of<112>and<001>for the wire ofΦ18μm.For drawn copper wire of 18μm,superior properties are obtained with a tensile strength of 729.8 MPa and an electrical conductivity of 86.9%IACS.Furthermore,it is found that grain strengthening,dislocation strengthening,and texture strengthening are three primary strengthening mechanisms of drawn copper wire,while the dislocation density is the main factor on the reducing of conductivity. 展开更多
关键词 copper wires ultrafine wire DRAWING texture evolution tensile strength
在线阅读 下载PDF
Microstructural evolution and mechanical properties of AZ31 Mg alloy fabricated by a novel bifurcation-equal channel angular pressing
2
作者 HAN Ting-zhuang ZHANG Hua +6 位作者 YANG Mu-xuan WANG Li-fei LU Li-wei ZHANG De-chuang CAO Xia XU Ji BAI Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2961-2972,共12页
In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were... In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease. 展开更多
关键词 AZ31 Mg alloy B-ECAP microstructure texture evolution mechanical properties
在线阅读 下载PDF
Weakened in-plane anisotropy of AZ31 magnesium alloy sheet induced by pre-enhanced non-basal slips during hot rolling
3
作者 YANG Chao-yang WANG Li-fei +7 位作者 XUE Liang-liang HUANG Qiu-yan XIA Da-biao FU Xin-wei SONG Bo ZHENG Liu-wei WANG Hong-xia KWANG Seon-Shin 《Journal of Central South University》 2025年第3期706-726,共21页
To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with th... To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with the thickness of 1 mm are achieved after five passes rolling at 300 ℃. A double peak and disperse basal texture is generated after pre- rolling at higher temperatures when the non-basal slips are more active. So, the texture intensity of pre-rolled samples is reduced. Moreover, the distribution condition of in-grain misorientation axes (a method to analyze the activation of slips) shows that the pyramidal slip is quite active during deformation. After annealing on final rolled sheets, the texture distributions are changed and the intensity of texture reduces obviously due to static recrystallization. In particular, the r-value and in-plane anisotropy of pre-rolled samples are obviously lower than those of sample without pre-rolling. 展开更多
关键词 magnesium alloys MICROSTRUCTURE ANISOTROPY texture evolution
在线阅读 下载PDF
Effects of tantalum addition on microstructure and properties of titanium alloy fabricated by laser powder bed fusion 被引量:4
4
作者 ZHOU Li-bo SHU Jing-guo +6 位作者 SUN Jin-shan CHEN Jian HE Jianjun LI Wei HUANG Wei-ying NIU Yan YUAN Tie-chui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1111-1128,共18页
The expanding of material library of laser powder bed fusion(L-PBF)is of great significance to the development of material science.In this study,the biomedical Ti-13Nb-13Zr powder was mixed with the tantalum particles... The expanding of material library of laser powder bed fusion(L-PBF)is of great significance to the development of material science.In this study,the biomedical Ti-13Nb-13Zr powder was mixed with the tantalum particles(2 wt%−8 wt%)and fabricated by L-PBF.The microstructure consists of aβmatrix with partially unmelted pure tantalum distributed along the boundaries of molten pool owing to the Marangoni convention.Because the melting process of Ta absorbs lots of energy,the size of molten pool becomes smaller with the increase of Ta content.The fine microstructure exists in the center of melt pool while coarse microstructure is on the boundaries of melt pool because of the existence of heat-affected zone.The columnar-to-equiaxed transitions(CETs)happen in the zones near the unmelted Ta,and the low lattice mismatch induced by solid Ta phase is responsible for this phenomenon.The recrystallization texture is strengthened while the fiber texture is weakened when the tantalum content is increased.Due to the formation of refined martensiteα′grains during L-PBF,the compressive strengths of L-PBF-processed samples are higher than those fabricated by traditional processing technologies.The present research will provide an important reference for biomedical alloy design via L-PBF process in the future. 展开更多
关键词 laser powder bed fusion titanium alloys TANTALUM solidification microstructure texture evolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部