当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor...当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。展开更多
文摘在煤矿安全领域,事故的预防至关重要。为了对煤矿开采风险进行深入分析,提出了一种基于文本数据的煤矿安全事故智能分析模型及集成分析平台。首先,采用融合数据增强技术的卷积神经网络文本分类(Text-Convolutional Neural Network,Text-CNN)方法构建煤矿安全事故分析模型,对大量非结构化事故文本进行精准的分类筛选;然后,利用自然语言处理(Natural Language Processing,NLP)技术建立煤矿事故简报集成分析系统,通过该系统对煤矿事故报告进行事故统计分析、风险分析等,总结出不同地区煤矿事故的死亡情况与类型差异,明确了煤矿安全事故之间的潜在模式。研究表明,通过集合事故简报分析模型的集成分析平台可以实现对煤矿安全事故信息的获取再利用,分析事故潜在规律和风险大小,有助于提升煤矿的风险管理水平,提高事故预防能力。