期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
基于Transformer和Text-CNN的日志异常检测
1
作者 尹春勇 张小虎 《计算机工程与科学》 北大核心 2025年第3期448-458,共11页
日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统... 日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统的基于Transformer的方法,难以捕捉日志序列的局部特征,针对上述问题,提出了基于Transformer和Text-CNN的日志异常检测方法LogTC。首先,通过规则匹配将日志转换成结构化的日志数据,并保留日志语句中的有效信息;其次,根据日志特性采用固定窗口或会话窗口将日志语句划分为日志序列;再次,使用自然语言处理技术Sentence-BERT生成日志语句的语义化表示;最后,将日志序列的语义化向量输入到LogTC日志异常检测模型中进行检测。实验结果表明,LogTC能够有效地检测日志数据中的异常,且在2个数据集上都取得了较好的结果。 展开更多
关键词 日志异常检测 深度学习 词嵌入 TRANSFORMER text-cnn
在线阅读 下载PDF
基于多模态财务大数据的智能分析预测模型 被引量:2
2
作者 王伯平 王邦平 《无线电通信技术》 北大核心 2025年第3期501-510,共10页
当前,研究者对财务领域的文本情感分析和语音情感识别越来越感兴趣,因其可以捕捉到企业利益相关者(如管理者和投资者)的意图和意见。结合文本情感信息,企业在预测财务绩效方面取得了显著的性能提升。然而,仅考虑文本情感,对管理者的情... 当前,研究者对财务领域的文本情感分析和语音情感识别越来越感兴趣,因其可以捕捉到企业利益相关者(如管理者和投资者)的意图和意见。结合文本情感信息,企业在预测财务绩效方面取得了显著的性能提升。然而,仅考虑文本情感,对管理者的情感状态以及对财务危机预测的关注度远远不够。因此提出了一种基于多模态财务大数据的智能分析预测模型(Multi Modal Financial Intelligent Model,MMFIM),融合了语音情感特征、文本情感特征以及传统财务特征多模态数据以解决上述问题。MMFIM通过卷积神经网络(Convolutional Neural Network,CNN)模型识别管理者的语音情感状态,利用FinBERT模型抽取文本情感特征,将获得的情感信息与传统的财务指标相融合实现对财务危机更准确的预测。在美国40家最大(按市值计算)企业的1278次财报电话会议数据上对MMFIM模型进行验证,实验结果表明,与现有预测模型相比,所提MMFIM模型具有更高的准确率。 展开更多
关键词 多模态 语音情感识别 文本情感分析 卷积神经网络 FinBERT 财务危机预测
在线阅读 下载PDF
融合BiLSTM与CNN的推特黑灰产分类模型 被引量:3
3
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(BiLSTM) 卷积神经网络(CNN) 黑灰产 推特
在线阅读 下载PDF
基于Word2vec和句法规则的自动问答系统问句相似度研究 被引量:7
4
作者 刘杰 白尚旺 +2 位作者 陆望东 党伟超 潘理虎 《计算机应用与软件》 北大核心 2021年第3期169-174,201,共7页
自动问答系统问句相似度计算的准确率直接影响系统返回答案的准确率,对此提出一种基于Word2vec和句法规则的问句相似度计算方法。构造Text-CNN问句分类模型将问句进行分类,再构造Word2vec词向量模型将问句中词与词的空间向量相似度转换... 自动问答系统问句相似度计算的准确率直接影响系统返回答案的准确率,对此提出一种基于Word2vec和句法规则的问句相似度计算方法。构造Text-CNN问句分类模型将问句进行分类,再构造Word2vec词向量模型将问句中词与词的空间向量相似度转换成语义相似度,并加入句法规则的分析。随机从搜狗公开问答数据集中抽取200条数据进行测试,结果表明,该方法与TF-IDF方法相比,自动问答系统返回答案的准确率和召回率分别提高了0.259和0.154。 展开更多
关键词 自动问答系统 Word2vec text-cnn 问句相似度
在线阅读 下载PDF
一种文本-图像增强的多模态知识图谱嵌入方法 被引量:4
5
作者 肖桂阳 王立松 江国华 《计算机科学》 CSCD 北大核心 2023年第8期163-169,共7页
大多传统的知识表示学习方法只关注三元组中的结构化信息,无法很好地利用实体图像、关系路径、文本描述等附加信息来学习知识表示或只融合一种附加信息。因此,提出同时融合实体描述和图像的多模态知识图谱嵌入方法,通过文本、图像相互增... 大多传统的知识表示学习方法只关注三元组中的结构化信息,无法很好地利用实体图像、关系路径、文本描述等附加信息来学习知识表示或只融合一种附加信息。因此,提出同时融合实体描述和图像的多模态知识图谱嵌入方法,通过文本、图像相互增强,可以提供更加全面的外部信息来弥补单个信息源的不完整性给知识表示学习带来的不足。首先进行实体描述和图像建模,得到实体的文本表示和图像表示,并把它们作为TransE中结构表示的补充,最后通过3种实体表示的联合训练实现知识图谱和文本、图像的统一空间表示,提高实体和关系预测的准确性。实验结果表明,该模型实体预测的命中率比不融合附加信息的方法提高了3.09%,比只融合实体描述的方法提高了0.97%,比只融合实体图像的方法提高了1.32%。 展开更多
关键词 知识表示学习 实体描述 实体图像 text-cnn 联合训练
在线阅读 下载PDF
融合多头自注意力机制的中文分类方法 被引量:8
6
作者 熊漩 严佩敏 《电子测量技术》 2020年第10期125-130,共6页
中文文本分类任务中,深度学习神经网络方法具有自动提取特征、特征表达能力强的优势,但其模型可解释性不强。提出了一种Text-CNN+Multi-Head Attention模型,引入多头自注意力机制克服Text-CNN可解释性的不足。首先采用Text-CNN神经网络... 中文文本分类任务中,深度学习神经网络方法具有自动提取特征、特征表达能力强的优势,但其模型可解释性不强。提出了一种Text-CNN+Multi-Head Attention模型,引入多头自注意力机制克服Text-CNN可解释性的不足。首先采用Text-CNN神经网络,高效提取文本局部特征信息;然后通过引入多头自注意力机制,最大限度发挥Text-CNN的并行运算能力,强调文本序列全局信息的捕捉;最后在时间和空间上完成对文本信息的特征提取。实验结果表明,提出的模型较其他模型在保证运算速度的同时,准确率提升了1%~2%。 展开更多
关键词 中文文本分类 text-cnn Multi-Head Self-Attention
在线阅读 下载PDF
融合主题信息的卷积神经网络文本分类方法研究 被引量:20
7
作者 杨锐 陈伟 +3 位作者 何涛 张敏 李蕊伶 岳芳 《现代情报》 CSSCI 2020年第4期42-49,共8页
[目的/意义]针对能源政策语义信息丰富的特点,研究不同环境下卷积神经网络模型对能源政策文本特征分类识别的效果并提出优化方法,辅助能源政策信息资源进行自动分类操作,方便研究人员更好地进行能源政策解读。[方法/过程]在不同环境下... [目的/意义]针对能源政策语义信息丰富的特点,研究不同环境下卷积神经网络模型对能源政策文本特征分类识别的效果并提出优化方法,辅助能源政策信息资源进行自动分类操作,方便研究人员更好地进行能源政策解读。[方法/过程]在不同环境下利用字符级和词级卷积神经网络模型对能源政策自动文本分类识别效果进行实验,从标题、内容、核心主题句等角度全面对比分析,利用Doc2Vec抽取不同比例核心主题句,将这些主题信息融入卷积神经网络模型中以对实验进行优化。[结果/结论]随着核心主题句抽取率的提高F1均值呈正态分布,当抽取率为70%时达到平衡,神经网络模型评估F1均值为83.45%,较实验中的其它方法均有所提高,通过Doc2Vec提取主题信息,并将其融入卷积神经网络的方法有效提升了卷积神经网络模型自动文本分类的效果。 展开更多
关键词 能源政策 卷积神经网络 文本分类 词向量 文本向量
在线阅读 下载PDF
基于双注意力机制和迁移学习的跨领域推荐模型 被引量:22
8
作者 柴玉梅 员武莲 +1 位作者 王黎明 刘箴 《计算机学报》 EI CSCD 北大核心 2020年第10期1924-1942,共19页
跨领域推荐可用于解决单一领域数据稀疏导致的推荐系统性能退化问题,还可以缓解推荐系统中存在的用户冷启动问题.然而,现有的方法大多利用用户对项目的评分进行建模,忽略了评论文本所蕴含的信息.为此,本文提出了一种基于双注意力机制和... 跨领域推荐可用于解决单一领域数据稀疏导致的推荐系统性能退化问题,还可以缓解推荐系统中存在的用户冷启动问题.然而,现有的方法大多利用用户对项目的评分进行建模,忽略了评论文本所蕴含的信息.为此,本文提出了一种基于双注意力机制和迁移学习的跨领域推荐模型,首先通过CNN对评论文本建模,提取用户和项目特征;其次通过构造融合词的上下文关系的词注意力机制从评论文本中捕获词级别的信息,以提升CNN对文本中重点信息的关注度;然后通过构造特征突显机制从CNN提取到的用户特征和项目特征中捕获特征级别的信息;最后引入迁移学习,通过同时提取领域特有的特征和领域间的共享特征进行不同领域之间的联合建模,进行评分预测.本文在Amazon数据集上进行了实验比较与分析,首先对本文模型的推荐性能进行评估,与现有的跨领域推荐模型相比,在两种不同的跨领域数据集上平均绝对误差分别提升6.1%和9.15%,均方根误差分别提升3.66%和7.01%;然后对本文模型的知识迁移性能进行评估,与现有的单领域推荐模型相比,在不同数据集下均方误差分别提升5.47%和10.35%;最后通过实验验证了本文提出的注意力机制的有效性,及在缓解数据稀疏问题和用户冷启动问题方面的优势,也验证了模型的普适性. 展开更多
关键词 推荐系统 迁移学习 跨领域 CNN 评论文本
在线阅读 下载PDF
基于吸引子传播聚类的改进双通道CNN短文本分类算法 被引量:9
9
作者 王儒 刘培玉 王培培 《小型微型计算机系统》 CSCD 北大核心 2017年第8期1730-1734,共5页
传统的文本分类方法在处理短文本分类任务时遇到了很大的困难,针对短文本分类任务上的数据稀疏等难点,本文尝试在短文本特征输入和卷积神经网络结构上进行改进.在特征表示Word embedding训练时采取non-static和static两种方式,将训练好... 传统的文本分类方法在处理短文本分类任务时遇到了很大的困难,针对短文本分类任务上的数据稀疏等难点,本文尝试在短文本特征输入和卷积神经网络结构上进行改进.在特征表示Word embedding训练时采取non-static和static两种方式,将训练好的Word embedding进行聚类处理,聚类得到的Word embedding库作为模型输入的词典库;提出一种改进的双通道卷积神经网络结构,网络通过双通道获取更多的局部敏感信息增加特征数目,然后经过连续的池化实现特征抽取.经实验验证,提出的语义聚类处理和改进的网络模型与传统的机器学习方法相比,在短文本分类任务的准确率上有显著的提升. 展开更多
关键词 词向量聚类 短文本 CNN 分类
在线阅读 下载PDF
融合self-attention机制的卷积神经网络文本分类模型 被引量:22
10
作者 邵清 马慧萍 《小型微型计算机系统》 CSCD 北大核心 2019年第6期1137-1141,共5页
传统的文本分类算法采用词向量表示文本,忽视了上下文语境中词义的变化.本文通过引入self-attention机制处理词向量,提出一种卷积神经网络模型与关键词提取技术相结合的文本分类模型.该模型对文档进行self-attention操作,以抽取关键信息... 传统的文本分类算法采用词向量表示文本,忽视了上下文语境中词义的变化.本文通过引入self-attention机制处理词向量,提出一种卷积神经网络模型与关键词提取技术相结合的文本分类模型.该模型对文档进行self-attention操作,以抽取关键信息,构建文档特征图,根据卷积神经网络模型和关键词提取技术实现特征向量的分类.在真实数据集上进行性能分析,并与循环神经网络模型、长短时记忆网络模型进行比较,结果表明该分类模型有效地提高了分类的准确性. 展开更多
关键词 文本分类 卷积神经网络 自注意力机制 关键词提取技术
在线阅读 下载PDF
基于E-CNN和BLSTM-CRF的临床文本命名实体识别 被引量:18
11
作者 曹春萍 关鹏举 《计算机应用研究》 CSCD 北大核心 2019年第12期3748-3751,共4页
在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)... 在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)结合的模型,通过对CNN中的卷积层设定不同卷积窗口的大小,来捕获多个词语之间更丰富的边界特征信息。然后将集成的特征信息传递给BLSTM模型进行训练,最后由CRF模型得到最终的序列标注。实验结果表明,该方法针对临床病历文本中的复合实体识别具有良好的效果。 展开更多
关键词 命名实体识别 临床文本 集成的卷积神经网络
在线阅读 下载PDF
煤矿安全风险分析的文本数据模型与集成分析平台 被引量:3
12
作者 王启飞 王俊龙 +3 位作者 刘昊霖 赵逸涵 孙英峰 李蓓 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4358-4365,共8页
在煤矿安全领域,事故的预防至关重要。为了对煤矿开采风险进行深入分析,提出了一种基于文本数据的煤矿安全事故智能分析模型及集成分析平台。首先,采用融合数据增强技术的卷积神经网络文本分类(Text-Convolutional Neural Network,Text-... 在煤矿安全领域,事故的预防至关重要。为了对煤矿开采风险进行深入分析,提出了一种基于文本数据的煤矿安全事故智能分析模型及集成分析平台。首先,采用融合数据增强技术的卷积神经网络文本分类(Text-Convolutional Neural Network,Text-CNN)方法构建煤矿安全事故分析模型,对大量非结构化事故文本进行精准的分类筛选;然后,利用自然语言处理(Natural Language Processing,NLP)技术建立煤矿事故简报集成分析系统,通过该系统对煤矿事故报告进行事故统计分析、风险分析等,总结出不同地区煤矿事故的死亡情况与类型差异,明确了煤矿安全事故之间的潜在模式。研究表明,通过集合事故简报分析模型的集成分析平台可以实现对煤矿安全事故信息的获取再利用,分析事故潜在规律和风险大小,有助于提升煤矿的风险管理水平,提高事故预防能力。 展开更多
关键词 安全工程 煤矿事故 卷积神经网络文本分类(text-cnn) 自然语言处理(NLP) 事故预防
在线阅读 下载PDF
WordNG-Vec:一种应用于CNN文本分类的词向量模型 被引量:6
13
作者 王勇 何养明 +2 位作者 邹辉 黎春 陈荟西 《小型微型计算机系统》 CSCD 北大核心 2019年第3期499-502,共4页
文本特征提取(文本输入表示)作为文本分类技术的要点,其构建质量直接影响着分类系统的分类效果.现在最流行的文本输入表示——词向量(Word Vector)虽然考虑了词的相似性但忽略了局部词序特征,在一些情况下造成文本语义上的缺失和歪曲.为... 文本特征提取(文本输入表示)作为文本分类技术的要点,其构建质量直接影响着分类系统的分类效果.现在最流行的文本输入表示——词向量(Word Vector)虽然考虑了词的相似性但忽略了局部词序特征,在一些情况下造成文本语义上的缺失和歪曲.为此,本文提出了一种结合N-Gram特征与Word2vec的词向量模型WordNG-Vec,其提取出的词向量(Word-NG向量),作为双通道卷积神经网络模型(DC-CNN)的输入.经过多组对比实验分析表明,在精确率(precision)和召回率(recall)和F1值三个评价指标下,本文提出的方法有效提高文本分类的效果. 展开更多
关键词 文本分类 词向量 DC-CNN N-Gram特征
在线阅读 下载PDF
基于CP-CNN的中文短文本分类研究 被引量:24
14
作者 余本功 张连彬 《计算机应用研究》 CSCD 北大核心 2018年第4期1001-1004,共4页
短文本具有长度短、特征稀疏以及上下文依赖强等特点,传统方法对其直接进行分类精度有限。针对此问题,提出了一种结合字符和词的双输入卷积神经网络模型CP-CNN。该模型通过加入一种用拼音序列表征字符级输入的方法,构建字符级和词级的... 短文本具有长度短、特征稀疏以及上下文依赖强等特点,传统方法对其直接进行分类精度有限。针对此问题,提出了一种结合字符和词的双输入卷积神经网络模型CP-CNN。该模型通过加入一种用拼音序列表征字符级输入的方法,构建字符级和词级的双输入矩阵,并在采样层使用k-max采样方法,增强模型特征的表达能力。利用豆瓣电影评论数据集对该模型进行识别精度评估,实验结果表明,与传统分类模型和标准卷积神经网络模型相比,该模型可有效提高短文本分类效果。 展开更多
关键词 短文本 分类 卷积神经网络
在线阅读 下载PDF
基于TextRank和字符级卷积神经网络的小学作文素材自动分类模型研究 被引量:7
15
作者 朱晓亮 石昀东 《计算机应用与软件》 北大核心 2019年第1期220-226,共7页
随着教育技术与信息技术的融合,实现面向小学生的语文写作自动辅助成为可能。快速自动地进行范文素材的分类入库是实现写作自动辅助的关键。作文素材语义信息丰富、种类较多,若采用现有方法进行自动分类入库操作往往难以取得好的效果。... 随着教育技术与信息技术的融合,实现面向小学生的语文写作自动辅助成为可能。快速自动地进行范文素材的分类入库是实现写作自动辅助的关键。作文素材语义信息丰富、种类较多,若采用现有方法进行自动分类入库操作往往难以取得好的效果。因此,在分析小学作文的类别特征并构建了一个数据集的基础上,提出基于TextRank和字符级卷积神经网络的小学作文自动分类模型。运用基于TextRank的关键句提取模型为范文素材,去除部分冗余的语义信息。应用word embedding对数据集进行文本表示,并将其作为卷积神经网络的输入。通过不断地迭代训练和测试,最终实现了该模型。实验表明了该方法对于作文分类任务能显著地提高分类的性能。 展开更多
关键词 TextRank 卷积神经网络 作文素材库 文档分类
在线阅读 下载PDF
基于多类别特征信息融合的车牌检测 被引量:2
16
作者 张勇 宁蒙 牛常勇 《计算机工程与设计》 北大核心 2015年第1期250-253,共4页
自然场景下复杂多变的影响因素给车牌检测带来困难,为检测并定位自然场景下移动车辆的车牌区域,通过分析信息融合和多类特征提取的特点,提出基于多类别特征信息融合的车牌检测方法。该算法在两种不同场景数据集上的测试效果验证了信息... 自然场景下复杂多变的影响因素给车牌检测带来困难,为检测并定位自然场景下移动车辆的车牌区域,通过分析信息融合和多类特征提取的特点,提出基于多类别特征信息融合的车牌检测方法。该算法在两种不同场景数据集上的测试效果验证了信息融合和多类特征提取能显著提高车牌检测的检测率和场景鲁棒性。 展开更多
关键词 车牌检测 信息融合 卷积神经网络 颜色检测 文本验证
在线阅读 下载PDF
基于句向量和卷积神经网络的文本聚类研究 被引量:7
17
作者 贾君霞 王会真 +1 位作者 任凯 康文 《计算机工程与应用》 CSCD 北大核心 2022年第16期123-128,共6页
针对文本聚类时文本特征维度高,忽略文档词排列顺序和语义等问题,提出了一种基于句向量(Doc2vec)和卷积神经网络(convolutional neural networks,CNN)的文本特征提取方法用于文本聚类。首先利用Doc2vec模型把训练数据集中的文本转换成... 针对文本聚类时文本特征维度高,忽略文档词排列顺序和语义等问题,提出了一种基于句向量(Doc2vec)和卷积神经网络(convolutional neural networks,CNN)的文本特征提取方法用于文本聚类。首先利用Doc2vec模型把训练数据集中的文本转换成句向量,充分考虑文档词排列顺序和语义;然后利用CNN提取文本的深层语义特征,解决特征维度高的问题,得到能够用于聚类的文本特征向量;最后使用k-means算法进行聚类。实验结果表明,在爬取的搜狗新闻数据上,该文本聚类模型的准确率达到了0.776,F值指标达到了0.780,相比其他文本聚类模型均有所提高。 展开更多
关键词 卷积神经网络(CNN) Doc2vec 文本表示 文本聚类
在线阅读 下载PDF
RHS-CNN:一种基于正则化层次Softmax的CNN文本分类模型 被引量:17
18
作者 王勇 何养明 +1 位作者 陈荟西 黎春 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第5期187-195,共9页
传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)... 传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)能极大地提高训练速度,但由于加入了大量的节点参数,使得优化难度增加,优化需要更长的迭代步,且容易过拟合,继而影响模型的拟合速度和分类效果。为此,提出了改进算法模型RHS-CNN(regularization hierarchical softmax CNN),采用正则化的方法,对H-Softmax的节点参数进行约束,避免过拟合,增强模型的泛化能力。实验分析结果表明:所提出的方法在相应评价指标上相对Softmax、H-Softmax有着一定的提升。 展开更多
关键词 文本分类 正则化 H-Softmax RHS-CNN
在线阅读 下载PDF
一种基于字词双通道网络的文本情感分析方法 被引量:4
19
作者 李源 崔玉爽 王伟 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第6期179-186,共8页
针对传统情感分析方法存在的分类准确率低,提取信息不全面等问题,提出了一种基于字词双通道情感分析方法C-A-BiLSTM。该方法模型通过在字向量和词向量两个不同方向的通道上利用卷积神经网络进行卷积运算。其中,字向量通道提取了语义更... 针对传统情感分析方法存在的分类准确率低,提取信息不全面等问题,提出了一种基于字词双通道情感分析方法C-A-BiLSTM。该方法模型通过在字向量和词向量两个不同方向的通道上利用卷积神经网络进行卷积运算。其中,字向量通道提取了语义更加丰富的局部信息并且有效缓解了词表中未登录词的问题,而词向量通道利用词性标注技术获取对应单词的词性,解决了原始词向量面临的一词多义问题。这两个通道的结合虽高效挖掘出更深层的语义语法信息,但是无法从文本张量中筛选出关键信息,耗费了大量的算力,因此引入了Attention机制,使模型有目标性的关注重要信息并降低了计算的复杂度。文中在此基础上,通过结合双向长短记忆网络来进一步提取上下文信息,从而获得更加全面且准确的高质量文本情感特征信息。通过对比实验,结果显示,相比于传统的卷积神经网络、支持向量机以及双向长短记忆网络算法,该方法在准确率、召回率和F1值等指标均达到94%以上,而且其差错率也降低了约1%~6%,证明该方法在文本分类任务中具有较优的分析效果。 展开更多
关键词 卷积神经网络 双向长短记忆网络 文本情感分析 字向量 Word-POS向量
在线阅读 下载PDF
基于GloVe模型和注意力机制Bi-LSTM的文本分类方法 被引量:10
20
作者 周燕 《电子测量技术》 北大核心 2022年第7期42-47,共6页
为了提高文本分类的准确性,扩展分类任务的多样性,提出一种结合一维卷积神经网络(1D-CNN)和双向长短期记忆网络(Bi-LSTM)的文本分类方法。首先,为了解决近义词、多义词的表征困难,采用GloVe模型表示词特征,充分利用全局信息和共现窗口... 为了提高文本分类的准确性,扩展分类任务的多样性,提出一种结合一维卷积神经网络(1D-CNN)和双向长短期记忆网络(Bi-LSTM)的文本分类方法。首先,为了解决近义词、多义词的表征困难,采用GloVe模型表示词特征,充分利用全局信息和共现窗口的优势。然后,利用1D-CNN进行特征提取,以降低分类器或预测模型的输入特征维数。最后,对分类模块Bi-LSTM进行优化,其隐藏层由两个残差块组成,并引入注意力机制进一步改善预测的准确度。在多个公开数据集中进行二元分类和多元主题分类实验。实验结果表明,与其他优秀方法相比,所提方法在准确率、召回率和F1得分方面的性能更优,最高准确度达92.5%,最高F1得分为91.3%。 展开更多
关键词 文本分类 GloVe模型 一维卷积神经网络 双向长短期记忆网络 注意力
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部