期刊文献+
共找到443篇文章
< 1 2 23 >
每页显示 20 50 100
一种基于KNN和随机仿射的边界样本合成过采样方法 被引量:1
1
作者 冷强奎 孙薛梓 孟祥福 《智能系统学报》 北大核心 2025年第2期329-343,共15页
过采样是处理不平衡数据分类问题的有效策略。本文提出了一种基于K近邻(K-nearest neighbor,KNN)和随机仿射的边界样本合成过采样方法,用于改进现有过采样方法的种子样本选择阶段和合成样本生成阶段。首先,引入三近邻理论,建立样本间有... 过采样是处理不平衡数据分类问题的有效策略。本文提出了一种基于K近邻(K-nearest neighbor,KNN)和随机仿射的边界样本合成过采样方法,用于改进现有过采样方法的种子样本选择阶段和合成样本生成阶段。首先,引入三近邻理论,建立样本间有效的内在近邻关系,并去除数据集中的噪声,以降低后续分类器的过拟合风险。其次,准确识别那些难以学习且包含丰富信息的少数类边界样本,并将其用作采样种子。最后,利用局部随机仿射代替线性插值机制,在原始数据的近似流形中均匀地生成合成样本。相比于传统过采样方法,本文方法能更充分挖掘数据集中的重要边界信息,从而为分类器提供更多辅助以改善其分类性能。在18个基准数据集上,与8种经典采样方法(结合4种不同分类器)进行了大量对比实验。结果表明,本文所提方法获得了更高的F1分数和几何均值(G-mean),可以更为有效地解决不平衡数据分类问题。此外,统计分析也证实该方法具有更高的弗里德曼排名(Friedman ranking)。 展开更多
关键词 k近邻 线性插值 边界样本 自然分布 过采样 三近邻理论 随机仿射变换 不平衡分类
在线阅读 下载PDF
基于密文KNN检索的室内定位隐私保护算法 被引量:3
2
作者 欧锦添 乐燕芬 施伟斌 《数据采集与处理》 CSCD 北大核心 2024年第2期456-470,共15页
在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于... 在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。 展开更多
关键词 隐私保护 指纹定位 密文k-近邻检索 布隆滤波器 WIFI
在线阅读 下载PDF
坝肩岩体质量LDA-KNN分类模型 被引量:2
3
作者 荀鹏 李娟 +2 位作者 魏玉峰 李常虎 范文东 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期281-290,302,共11页
工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出... 工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出发,选择岩体完整性系数(K v)、结构面间距(D)、岩石质量指标(RQD)等合适的评价指标,通过引入LDA(Linear Discriminant Analysis)降维方法和K近邻分析(K-Nearest-Neighbor,KNN)相结合的多分类模型,实现了岩体的非线性分级预测。通过定性定量相结合实现了岩体多因素,多指标的综合分级,并解决了多指标判断时信息冗余,复杂程度高的问题。与其他判别方案相比较,模型得出的结果准确率高,符合工程实际,减少了人为因素的影响,体现出较强的预测判别能力。该研究为水电站大坝坝肩处的平硐岩体质量划分提出了一种可行的预测方案。 展开更多
关键词 岩体结构 岩体质量分级 线性降维 k近邻算法 分类模型
在线阅读 下载PDF
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别 被引量:2
4
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 主成分分析(PCA) 核主成分分析(kernel-PCA) k-近邻算法(knn) 分类识别
在线阅读 下载PDF
基于PCA-BOA-KNN模型的水下爆炸舰船结构破损评估 被引量:1
5
作者 梁潇帝 刘寅东 《中国舰船研究》 CSCD 北大核心 2024年第3期150-157,共8页
[目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速... [目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速度峰值、位移峰值、应力峰值和超压峰值进行降维处理,得到2个本征特征量;最后,将由主成分分析法得到的结果代入贝叶斯网络优化(BOA)的KNN模型,通过建立的破口预报模型,预测一组工况下舰船不同剖面处的破口情况。[结果]结果显示,通过主成分分析法提取的前2个因子的累计贡献率为85.165%,这2个因子可代表5个特征量的主要信息;基于PCA-BOAKNN模型的破口预报结果与仿真结果基本一致。[结论]所提的预报模型方法对舰船结构破口预报有效,对于不同主尺度船体结构破口预报有一定的参考价值。 展开更多
关键词 结构分析 主成分分析 knn算法 水下爆炸
在线阅读 下载PDF
Classification Fusion in Wireless Sensor Networks 被引量:3
6
作者 LIU Chun-Ting HUO Hong +2 位作者 FANG Tao LI De-Ren SHEN Xiao 《自动化学报》 EI CSCD 北大核心 2006年第6期947-955,共9页
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl... In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved. 展开更多
关键词 Wireless sensor networks classification fusion wavelet decomposition weighted k-nearest-neighbor Dempster-Shafer theory
在线阅读 下载PDF
KNN数据挖掘算法在北京地区霾等级预报中的应用 被引量:55
7
作者 熊亚军 廖晓农 +6 位作者 李梓铭 张小玲 孙兆彬 赵秀娟 赵普生 马小会 蒲维维 《气象》 CSCD 北大核心 2015年第1期98-104,共7页
利用北京地区2013年气象数据以及PM_(2.5)浓度数据与能见度数据进行对比分析,结果发现气温、气压、相对湿度、露点温度、地面U风、地面V风以及PM_(2.5)小时浓度这7个要素是影响北京地区霾等级的关键因素。利用气温、地面气压、相对湿度... 利用北京地区2013年气象数据以及PM_(2.5)浓度数据与能见度数据进行对比分析,结果发现气温、气压、相对湿度、露点温度、地面U风、地面V风以及PM_(2.5)小时浓度这7个要素是影响北京地区霾等级的关键因素。利用气温、地面气压、相对湿度、露点温度、U风、V风分量以及PM_(2.5)浓度作为7个属性特征,以霾等级做为标志量构建训练样本集,结合KNN(KNearest Neighbor)数据挖掘算法构建疆等级预报分类器,并开展霾等级客观识别实验。结果表明K=3时该分类器的分类预报效果最佳,其13个站点的分类准确率高达88.2%。基于该算法构建的KNN模型预报无霾时的漏报概率很小,准确率高达91.8%;预报有轻度霾、中度霾以及重度霾时,空报的概率仅分别为4.7%、1.4%和2.6%。2014年8月29日至9月2日北京地区一次霾天气过程的预报结果表明:南郊观象台、密云和延庆3站的预报准确率分别达到74%、64%和84%,但霾等级的精度方面还有待于进一步提高。 展开更多
关键词 数据挖掘 knn 预报
在线阅读 下载PDF
改进型加权KNN算法的不平衡数据集分类 被引量:26
8
作者 王超学 潘正茂 +2 位作者 马春森 董丽丽 张涛 《计算机工程》 CAS CSCD 2012年第20期160-163,168,共5页
K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚... K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚类,按照权重分配模型计算各训练样本的权重,通过改进的KNN算法对测试样本进行分类。基于UCI数据集的大量实验结果表明,GAK-KNN算法的识别率和整体性能都优于传统KNN算法及其他改进算法。 展开更多
关键词 不平衡数据集 分类 k最邻近算法 权重分配模型 遗传算法 k-MEANS算法
在线阅读 下载PDF
基于粗糙集的快速KNN文本分类算法 被引量:22
9
作者 孙荣宗 苗夺谦 +1 位作者 卫志华 李文 《计算机工程》 CAS CSCD 北大核心 2010年第24期175-177,共3页
传统K最近邻一个明显缺陷是样本相似度的计算量很大,在具有大量高维样本的文本分类中,由于复杂度太高而缺乏实用性。为此,将粗糙集理论引入到文本分类中,利用上下近似概念刻画各类训练样本的分布,并在训练过程中计算出各类上下近似的范... 传统K最近邻一个明显缺陷是样本相似度的计算量很大,在具有大量高维样本的文本分类中,由于复杂度太高而缺乏实用性。为此,将粗糙集理论引入到文本分类中,利用上下近似概念刻画各类训练样本的分布,并在训练过程中计算出各类上下近似的范围。在分类过程中根据待分类文本向量在样本空间中的分布位置,改进算法可以直接判定一些文本的归属,缩小K最近邻搜索范围。实验表明,该算法可以在保持K最近邻分类性能基本不变的情况下,显著提高分类效率。 展开更多
关键词 文本分类 k最近邻 粗糙集
在线阅读 下载PDF
基于K-Medoids聚类的改进KNN文本分类算法 被引量:25
10
作者 罗贤锋 祝胜林 +1 位作者 陈泽健 袁玉强 《计算机工程与设计》 CSCD 北大核心 2014年第11期3864-3867,3937,共5页
为有效提高传统KNN算法(K最近邻算法)在海量数据的分类效率,分析传统KNN算法的分类过程,提出基于K-Medoids聚类的改进KNN算法。利用K-Medoids算法对文本训练集进行聚类,把文本训练集分成相似度较高的簇;根据待分类文本与簇的相对位置,... 为有效提高传统KNN算法(K最近邻算法)在海量数据的分类效率,分析传统KNN算法的分类过程,提出基于K-Medoids聚类的改进KNN算法。利用K-Medoids算法对文本训练集进行聚类,把文本训练集分成相似度较高的簇;根据待分类文本与簇的相对位置,对文本训练集进行裁剪,解决传统KNN算法在文本训练集过大时速度慢的问题。分析与实验结果表明,该裁剪方法能够合理有效地裁剪文本训练集,提高了KNN算法的运行效率和分类能力。 展开更多
关键词 文本分类 隶属度 k最近邻 样本裁剪 k-Medoids聚类
在线阅读 下载PDF
基于Spark框架的高效KNN中文文本分类算法 被引量:19
11
作者 于苹苹 倪建成 +2 位作者 姚彬修 李淋淋 曹博 《计算机应用》 CSCD 北大核心 2016年第12期3292-3297,共6页
针对K-最近邻(KNN)分类算法时间复杂度与训练样本数量成正比而导致的计算量大的问题以及当前大数据背景下面临的传统架构处理速度慢的问题,提出了一种基于Spark框架与聚类优化的高效KNN分类算法。该算法首先利用引入收缩因子的优化K-... 针对K-最近邻(KNN)分类算法时间复杂度与训练样本数量成正比而导致的计算量大的问题以及当前大数据背景下面临的传统架构处理速度慢的问题,提出了一种基于Spark框架与聚类优化的高效KNN分类算法。该算法首先利用引入收缩因子的优化K-medoids聚类算法对训练集进行两次裁剪;然后在分类过程中迭代K值获得分类结果,并在计算过程中结合Spark计算框架对数据进行分区迭代实现并行化。实验结果表明,在不同数据集中传统尽最近邻算法、基于K-medoids的群最近邻算法所耗费时间是所提Spark框架下的B最近邻算法的3.92-31.90倍,所提算法具有较高的计算效率,相较于Hadoop平台有较好的加速比,可有效地对大数据进行分类处理。 展开更多
关键词 k-最近邻 聚类 收缩因子 k-medoids SPARk 并行化计算
在线阅读 下载PDF
基于密度的kNN分类器训练样本裁剪方法的改进 被引量:13
12
作者 熊忠阳 杨营辉 张玉芳 《计算机应用》 CSCD 北大核心 2010年第3期799-801,817,共4页
在文本分类中,训练集的分布状态会直接影响k-近邻(kNN)分类器的效率和准确率。通过分析基于密度的kNN文本分类器训练样本的裁剪方法,发现它存在两大不足:一是裁剪之后的均匀状态只是以ε为半径的球形区域意义上的均匀状态,而非最理想的... 在文本分类中,训练集的分布状态会直接影响k-近邻(kNN)分类器的效率和准确率。通过分析基于密度的kNN文本分类器训练样本的裁剪方法,发现它存在两大不足:一是裁剪之后的均匀状态只是以ε为半径的球形区域意义上的均匀状态,而非最理想的均匀状态即两两样本之间的距离相等;二是未对低密度区域的样本做任何处理,裁剪之后仍存在大量不均匀的区域。针对这两处不足,提出了以下两点改进:一是优化了裁剪策略,使裁剪之后的训练集更趋于理想的均匀状态;二是实现了对低密度区域样本的补充。通过实验对比,改进后的方法在稳定性和准确率方面都有明显提高。 展开更多
关键词 文本分类 k-近邻 快速分类 样本裁剪 样本补充
在线阅读 下载PDF
基于KNN的特征自适应加权自然图像分类研究 被引量:17
13
作者 侯玉婷 彭进业 +1 位作者 郝露微 王瑞 《计算机应用研究》 CSCD 北大核心 2014年第3期957-960,共4页
针对自然图像类型广泛、结构复杂、分类精度不高的实际问题,提出了一种为自然图像不同特征自动加权值的K-近邻(K-nearest neighbors,KNN)分类方法。通过分析自然图像的不同特征对于分类结果的影响,采用基因遗传算法求得一组最优分类权... 针对自然图像类型广泛、结构复杂、分类精度不高的实际问题,提出了一种为自然图像不同特征自动加权值的K-近邻(K-nearest neighbors,KNN)分类方法。通过分析自然图像的不同特征对于分类结果的影响,采用基因遗传算法求得一组最优分类权值向量解,利用该最优权值对自然图像纹理和颜色两个特征分别进行加权,最后用自适应加权K-近邻算法实现对自然图像的分类。实验结果表明,在用户给定分类精度需求和低时间复杂度的约束下,算法能快速、高精度地进行自然图像分类。提出的自适应加权K-近邻分类方法对于门类繁多的自然图像具有普遍适用性,可以有效地提高自然图像的分类性能。 展开更多
关键词 k-近邻算法 基因算法 自然图像分类 特征加权
在线阅读 下载PDF
一种基于中心文档的KNN中文文本分类算法 被引量:17
14
作者 鲁婷 王浩 姚宏亮 《计算机工程与应用》 CSCD 北大核心 2011年第2期127-130,共4页
在浩瀚的数据资源中,为了实现对特定主题的搜索或提取,文本自动分类技术已经成为目前研究的热点。KNN是一种重要的文本自动分类方法,KNN能够处理大规模数据,且具有较高的稳定性,但面临分类速度较慢的问题。以KNN方法为基础,引入特征项... 在浩瀚的数据资源中,为了实现对特定主题的搜索或提取,文本自动分类技术已经成为目前研究的热点。KNN是一种重要的文本自动分类方法,KNN能够处理大规模数据,且具有较高的稳定性,但面临分类速度较慢的问题。以KNN方法为基础,引入特征项间的语义关系,并根据语义关系进行聚类生成中心文档,减少了KNN要搜索的文档数,提高了分类速度。仿真实验表明,该算法在不损失分类精度的情况下,显著提高了分类的速度。 展开更多
关键词 中文文本分类 k最邻近 中心文档 语义相似度 聚类
在线阅读 下载PDF
大数据下的快速KNN分类算法 被引量:29
15
作者 苏毅娟 邓振云 +1 位作者 程德波 宗鸣 《计算机应用研究》 CSCD 北大核心 2016年第4期1003-1006,1023,共5页
针对K最近邻算法测试复杂度至少为线性,导致其在大数据样本情况下的效率很低的问题,提出了一种应用于大数据下的快速KNN分类算法。该算法创新性地在K最近邻算法中引入训练过程,即通过线性复杂度聚类方法对大数据样本进行分块,然后在测... 针对K最近邻算法测试复杂度至少为线性,导致其在大数据样本情况下的效率很低的问题,提出了一种应用于大数据下的快速KNN分类算法。该算法创新性地在K最近邻算法中引入训练过程,即通过线性复杂度聚类方法对大数据样本进行分块,然后在测试过程中找出与待测样本距离最近的块,并将其作为新的训练样本进行K最近邻分类。这样的过程大幅度地减少了K最近邻算法的测试开销,使其能在大数据集中得以应用。实验表明,该算法在与经典KNN分类准确率保持近似的情况下,分类的速度明显快于经典KNN算法。 展开更多
关键词 k最近邻 测试复杂度 大数据 分块 聚类中心
在线阅读 下载PDF
基于等距映射与加权KNN的旋转机械故障诊断 被引量:38
16
作者 陈法法 汤宝平 苏祖强 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第1期215-220,共6页
针对旋转机械高维复杂故障特征数据难以快速准确辨识的问题,提出一种基于等距映射非线性流形学习与加权KNN(K-nearest neighbor)分类器相结合的旋转机械故障诊断方法。在由时域统计指标和内禀模态分量能量构造的原始特征空间中,首先利... 针对旋转机械高维复杂故障特征数据难以快速准确辨识的问题,提出一种基于等距映射非线性流形学习与加权KNN(K-nearest neighbor)分类器相结合的旋转机械故障诊断方法。在由时域统计指标和内禀模态分量能量构造的原始特征空间中,首先利用等距映射非线性流形学习算法提取旋转机械故障状态变化的本质特征,随后将提取的低维本质特征输入给加权KNN进行旋转机械的故障模式辨识。通过对齿轮箱的实验数据分析表明,该方法不仅对高维复杂的非线性故障特征具有良好的降维性能,而且故障识别率较之传统方法也明显提高,能够有效识别出高维特征空间的非线性故障特征。 展开更多
关键词 流形学习 等距映射 加权k近邻 旋转机械 故障诊断
在线阅读 下载PDF
Kernel-kNN:基于信息能度量的核k-最近邻算法 被引量:16
17
作者 刘松华 张军英 +1 位作者 许进 贾宏恩 《自动化学报》 EI CSCD 北大核心 2010年第12期1681-1688,共8页
提出一种核k最近邻算法.首先给出用于最近邻学习的信息能度量方法,该方法克服了高维数据不便于用传统距离度量表示的困难,提高了数据间类别相似性和距离的一致性.在此基础上,将传统的kNN扩展为非线性形式,并采用半正定规划学习全局最优... 提出一种核k最近邻算法.首先给出用于最近邻学习的信息能度量方法,该方法克服了高维数据不便于用传统距离度量表示的困难,提高了数据间类别相似性和距离的一致性.在此基础上,将传统的kNN扩展为非线性形式,并采用半正定规划学习全局最优的度量矩阵.算法主要特点是:能较好地适用于高维数据,并有效提升kNN的分类性能.多个数据集的实验和分析表明,本文的Kernel-kNN算法与传统的kNN算法比较,在低维数据上,分类准确率相当;在高维数据上,分类性能有明显提高. 展开更多
关键词 距离度量 非线性变换 k-最近邻(k-NN) 核方法
在线阅读 下载PDF
基于密度的kNN文本分类器训练样本裁剪方法 被引量:99
18
作者 李荣陆 胡运发 《计算机研究与发展》 EI CSCD 北大核心 2004年第4期539-545,共7页
随着WWW的迅猛发展 ,文本分类成为处理和组织大量文档数据的关键技术 kNN方法作为一种简单、有效、非参数的分类方法 ,在文本分类中得到广泛的应用 但是这种方法计算量大 ,而且训练样本的分布不均匀会造成分类准确率的下降 针对kNN... 随着WWW的迅猛发展 ,文本分类成为处理和组织大量文档数据的关键技术 kNN方法作为一种简单、有效、非参数的分类方法 ,在文本分类中得到广泛的应用 但是这种方法计算量大 ,而且训练样本的分布不均匀会造成分类准确率的下降 针对kNN方法存在的这两个问题 ,提出了一种基于密度的kNN分类器训练样本裁剪方法 ,这种方法不仅降低了kNN方法的计算量 ,而且使训练样本的分布密度趋于均匀 ,减少了边界点处测试样本的误判 实验结果显示 。 展开更多
关键词 文本分类 knn 快速分类
在线阅读 下载PDF
基于主动学习和TCM-KNN方法的有指导入侵检测技术 被引量:31
19
作者 李洋 方滨兴 +1 位作者 郭莉 田志宏 《计算机学报》 EI CSCD 北大核心 2007年第8期1464-1473,共10页
有指导网络入侵检测技术是网络安全领域研究的热点和难点内容,但目前仍然存在着对建立检测模型的数据要求过高、训练数据的标记需要依赖领域专家以及因此而导致的工作量及难度过大和实用性不强等问题,而当前的研究工作很少涉及到这些问... 有指导网络入侵检测技术是网络安全领域研究的热点和难点内容,但目前仍然存在着对建立检测模型的数据要求过高、训练数据的标记需要依赖领域专家以及因此而导致的工作量及难度过大和实用性不强等问题,而当前的研究工作很少涉及到这些问题的解决办法.基于TCM-KNN数据挖掘算法,提出了一种有指导入侵检测的新方法,并且采用主动学习的方法,选择使用少量高质量的训练样本进行建模从而高效地完成入侵检测任务.实验结果表明:其相对于传统的有指导入侵检测方法,在保证较高检测率的前提下,有效地降低了误报率;在采用选择后的训练集以及进行特征选择等优化处理后,其性能没有明显的削减,因而更适用于现实的网络应用环境. 展开更多
关键词 网络安全 入侵检测 TCM-knn算法 主动学习 数据挖掘
在线阅读 下载PDF
改进SVM-KNN的不平衡数据分类 被引量:21
20
作者 王超学 张涛 马春森 《计算机工程与应用》 CSCD 北大核心 2016年第4期51-55,103,共6页
针对支持向量机(SVM)在超平面附近进行不平衡数据(imbalanced datasets)分类的不准确性,提出了一种改进SVM-KNN算法,该算法在分类阶段计算测试样本与最优超平面的距离,如果距离差大于给定阈值可直接应用支持向量机分类;如果距离差小于... 针对支持向量机(SVM)在超平面附近进行不平衡数据(imbalanced datasets)分类的不准确性,提出了一种改进SVM-KNN算法,该算法在分类阶段计算测试样本与最优超平面的距离,如果距离差大于给定阈值可直接应用支持向量机分类;如果距离差小于给定阈值,则将所有支持向量都作为测试样本的近邻样本,进行KNN分类。通过对UCI数据集的大量实验表明,该算法在少数类样本的识别率和分类器的整体性能上有明显改善。 展开更多
关键词 支持向量机 k近邻法 不平衡数据集
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部