Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by u...Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.展开更多
It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria...It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.展开更多
To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed ...To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed via mechanical ball milling.The samples were characterized by SEM,XRD,TG-DSC,constant volume and constant pressure combustion experiments.The first exothermic peaks of Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3) appear at 579°C and 564.5°C,respectively.The corresponding activation energies are similar.The corresponding mechanism functions are set as G(a) = [-ln(1-a)]^(3/4) and G(a) =[-ln(1-a)]2/3,respectively,which belong to the Avrami-Erofeev equation.Al/Fe_(2)O_(3)/CuO has better thermal safety.For small dose samples,its critical temperature of thermal explosion is 121.05°C higher than that of Al/Fe_(2)O_(3)/Bi_(2)O_(3).During combustion,the flame of Al/Fe_(2)O_(3)/CuO is spherical,and the main products are FeAl_(2)O_(4) and Cu.The flame of Al/Fe_(2)O_(3)/Bi_(2)O_(3)is jet-like,and the main products are Al_(2)O_(3),Bi and Fe.Al/Fe_(2)O_(3)/Bi_(2)O_(3)has better ignition and gas production performance.Its average ignition energy is 4.2 J lower than that of Al/Fe_(2)O_(3)/CuO.Its average step-up rate is 28.29 MPa/s,which is much higher than 6.84 MPa/s of Al/Fe_(2)O_(3)/CuO.This paper provides a reference for studying the thermal safety and combustion performance of ternary thermite.展开更多
Three new reactive ternary terbium complexes were synthesized with the first ligand of thenoyltri-(fluoroacetone) and the reactive secondary ligand such as maleic anhydride, undecenoic acid, oleic acid, and characteri...Three new reactive ternary terbium complexes were synthesized with the first ligand of thenoyltri-(fluoroacetone) and the reactive secondary ligand such as maleic anhydride, undecenoic acid, oleic acid, and characterized by means of elemental analysis, ethylenediamine tetraacetic acid titrimetric method, Fourier transform infrared and ultraviolet spectroscopies. And the luminescent properties of the ternary terbium complexes were investigated. The results show that the ternary terbium complexes possess much higher luminescent intensity than the binary complex of terbium with thenoyltrifluoroacetone, and the synergy ability sequence of the three reactive ligands is as follows: undecenoic acid>oleic acid>maleic anhydride. Because the ternary terbium complexes contain reactive (ligands) that can be copolymerized with other monomers, a new way for the synthesis of the bonding-type rare earth polymer functional materials with excellent luminescent properties is provided.展开更多
Reduction smelting of the bismuth oxide residue from pressure leaching of bismuth sulfide was investigated in the FeO-SiO_2-CaO ternary slag system.The results show that all the recovery ratios of Bi,Ag,Cu and Pb incr...Reduction smelting of the bismuth oxide residue from pressure leaching of bismuth sulfide was investigated in the FeO-SiO_2-CaO ternary slag system.The results show that all the recovery ratios of Bi,Ag,Cu and Pb increase with the increase of reductive coal proportion,reaction temperature and time,while too much reductive coal would help Fe enter metal phase;CaO/SiO_2and Fe O/SiO_2 of the chosen slag system should be 0.5-0.75 and 1.25-1.75,respectively,for the reason that the slag system has the optimum mobility and is beneficial for the recovery of metals.The corresponding optimum conditions are determined as follows:the added coal proportion is 7%of the leaching residue,CaO/SiO_2 mass ratio in the chosen slag system is 0.5 and FeO-SiO_2 is 1.5,the reaction temperature is 1300°C and the reaction time is 40 min.Under the above conditions,the recovery ratios of Bi,Ag,Cu and Pb are 99.6%,99.8%,97.0%and 97.3%,respectively.展开更多
The phase equilibriua in the Ni Re Hf ternary system at 1173K were investigated by means of diffusion triple technique and electron microprobe analysis(EMPA). The experimental results indicate that two ternary interme...The phase equilibriua in the Ni Re Hf ternary system at 1173K were investigated by means of diffusion triple technique and electron microprobe analysis(EMPA). The experimental results indicate that two ternary intermetallics (α and β) and five binary intermetallics (Ni 3Hf, Ni 10 Hf 7, Ni 11 Hf 9, NiHf and NiHf 2) exist in the Ni Re Hf system at 1?173 K. A tentative isothermal section of this system at 1?173 K was constructed on the basis of experimental results. The isothermal section consists of nine three phase regions, five of which are supported by the experimental data.展开更多
Ternary strategy has demonstrated great potential in promoting the power conversion efficiency(PCE)of bulk heterojunction organic solar cells(BHJ OSCs).Two new polymer donors,TPQ-2 F-2 Cl and TPQ-2 F-4 F,were synthesi...Ternary strategy has demonstrated great potential in promoting the power conversion efficiency(PCE)of bulk heterojunction organic solar cells(BHJ OSCs).Two new polymer donors,TPQ-2 F-2 Cl and TPQ-2 F-4 F,were synthesized with chlorinated and fluorinated aromatic side chains,respectively,which contributed to distinct noncovalent interactions.Compared with the PM 6:L 8-BO host system,the TPQ-2 F-2 Cl based ternary OSCs obtained enhanced exciton dissociation and more balanced carrier mobility.Moreover,benefiting from the favorable miscibility of the PM 6:L 8-BO:TPQ-2 F-2 Cl blend,the ternary blending film featured a well-defined fibrillar morphology and improved molecular ordering.Consequently,the optimal PM 6:L 8-BO:TPQ-2 F-2 Cl device achieved a more outstanding PCE of 18.2%,a higher open circuit voltage(V_(oc)),and a better fill factor(FF)in comparison with the binary device(PCE=17.7%).In contrast,the addition of TPQ-2 F-4 F would generate excessive aggregation of blend,thereby reducing the PCE of ternary OSCs(16.0%).This work shows a promising idea for designing efficient third component donor polymers.展开更多
The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succini...The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.展开更多
Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetall...Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetallic compounds at the interface of three series of samples were analyzed and compared.Depending on the Si content,a variety of ternary Al-Fe-Si intermetallic compounds(IMCs) such as Fe_(4)(Al,Si)_(13),Fe_(2) Al_(8) Si(τ_(5)),and Fe_(2) Al_(9) Si_(2)(τ_(6)) were formed at the interface.Mg element in 5356 filler material cannot contribute to the formation of Al-Fe intermetallic phases due to the positive mixing enthalpy of Mg-Fe.The presence of Mg enhances the hot cracking phenomenon near the Al-Fe intermetallic compound at the interface.Zn coating does not participate in intermetallic formation due to its evaporation during WB.It was concluded that the softening of the base metal in the heat-affected zone rather than the IMCs determines the joint efficiency.展开更多
The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for ...The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.展开更多
The oxidation of the ternary alloy Ni-15Cu-5Al in 1 × 105 Pa pure oxygen at 700 ℃ and 800 ℃ was studied. The results show that the behavior of the Ni-rich alloy is similar to that of the binary Ni-Al alloy with...The oxidation of the ternary alloy Ni-15Cu-5Al in 1 × 105 Pa pure oxygen at 700 ℃ and 800 ℃ was studied. The results show that the behavior of the Ni-rich alloy is similar to that of the binary Ni-Al alloy with the same Al content in the form of an external NiO layer coupled to the internal oxidation of aluminium. The presence of 15%(mole fraction) Cu cannot modify substantially the values of relevant parameters affecting the transition from the internal to the external oxidation of aluminium. The presence of 5 % Al reduces the oxidation rate of the corresponding Ni-Cu alloy during the whole oxidation stages, though 5 % Al is still insufficient to form protective external alumina scales.展开更多
Recovering valuable metals from spent lithium-ion batteries(LIBs)for high value-added application is beneficial for global energy cycling and environmental protection.In this work,we obtain the high-performance N-dope...Recovering valuable metals from spent lithium-ion batteries(LIBs)for high value-added application is beneficial for global energy cycling and environmental protection.In this work,we obtain the high-performance N-doped Ni-Co-Mn(N-NCM)electrocatalyst from waste LIBs,for robust oxygen evolution application.Lithium-rich solution and NCM oxides are effectively separated from ternary cathode materials by sulfation roasting and low-temperature water leaching approach,in which the recovery efficiency of Li metal reaches nearly 100%.By facile NH_(3)treatment,the incorporation of N into NCM significantly increases the ratio of low-valence state Co^(2+)and Mn^(2+),and the formed Mn-N bond benefits the surface catalytic kinetics.Meanwhile,the N doping induces lattice expansion of the NCM,triggering tensile stress to favor the adsorption of the reactant.Thus,the optimized N-NCM electrocatalyst exhibits the superior overpotentials of 256 and 453 mV to achieve the current density of 10 and 100 mA/cm^(2),respectively,with a low Tafel slope of 37.3 mV/dec.This work provides a fresh avenue for recycling spent LIBs in the future to achieve sustainable development.展开更多
基金Project(52479115)supported by the National Natural Science Foundation of ChinaProject(2024SF-YBXM-615)supported by the Key Research and Development Program of Shaanxi Province,China+1 种基金Project(2022943)supported by the Youth Innovation Team of Shaanxi Universities,ChinaProject(300102283721)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.
文摘It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.
基金supported by the National Natural Science Foundation of China, project number: 51704302the Natural Science Foundation of Shaanxi Province, China, project number: Grant No.2020JC-50。
文摘To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed via mechanical ball milling.The samples were characterized by SEM,XRD,TG-DSC,constant volume and constant pressure combustion experiments.The first exothermic peaks of Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3) appear at 579°C and 564.5°C,respectively.The corresponding activation energies are similar.The corresponding mechanism functions are set as G(a) = [-ln(1-a)]^(3/4) and G(a) =[-ln(1-a)]2/3,respectively,which belong to the Avrami-Erofeev equation.Al/Fe_(2)O_(3)/CuO has better thermal safety.For small dose samples,its critical temperature of thermal explosion is 121.05°C higher than that of Al/Fe_(2)O_(3)/Bi_(2)O_(3).During combustion,the flame of Al/Fe_(2)O_(3)/CuO is spherical,and the main products are FeAl_(2)O_(4) and Cu.The flame of Al/Fe_(2)O_(3)/Bi_(2)O_(3)is jet-like,and the main products are Al_(2)O_(3),Bi and Fe.Al/Fe_(2)O_(3)/Bi_(2)O_(3)has better ignition and gas production performance.Its average ignition energy is 4.2 J lower than that of Al/Fe_(2)O_(3)/CuO.Its average step-up rate is 28.29 MPa/s,which is much higher than 6.84 MPa/s of Al/Fe_(2)O_(3)/CuO.This paper provides a reference for studying the thermal safety and combustion performance of ternary thermite.
文摘Three new reactive ternary terbium complexes were synthesized with the first ligand of thenoyltri-(fluoroacetone) and the reactive secondary ligand such as maleic anhydride, undecenoic acid, oleic acid, and characterized by means of elemental analysis, ethylenediamine tetraacetic acid titrimetric method, Fourier transform infrared and ultraviolet spectroscopies. And the luminescent properties of the ternary terbium complexes were investigated. The results show that the ternary terbium complexes possess much higher luminescent intensity than the binary complex of terbium with thenoyltrifluoroacetone, and the synergy ability sequence of the three reactive ligands is as follows: undecenoic acid>oleic acid>maleic anhydride. Because the ternary terbium complexes contain reactive (ligands) that can be copolymerized with other monomers, a new way for the synthesis of the bonding-type rare earth polymer functional materials with excellent luminescent properties is provided.
基金Project(134414) supported by the Postdoctoral Funded Program of Central South University,China
文摘Reduction smelting of the bismuth oxide residue from pressure leaching of bismuth sulfide was investigated in the FeO-SiO_2-CaO ternary slag system.The results show that all the recovery ratios of Bi,Ag,Cu and Pb increase with the increase of reductive coal proportion,reaction temperature and time,while too much reductive coal would help Fe enter metal phase;CaO/SiO_2and Fe O/SiO_2 of the chosen slag system should be 0.5-0.75 and 1.25-1.75,respectively,for the reason that the slag system has the optimum mobility and is beneficial for the recovery of metals.The corresponding optimum conditions are determined as follows:the added coal proportion is 7%of the leaching residue,CaO/SiO_2 mass ratio in the chosen slag system is 0.5 and FeO-SiO_2 is 1.5,the reaction temperature is 1300°C and the reaction time is 40 min.Under the above conditions,the recovery ratios of Bi,Ag,Cu and Pb are 99.6%,99.8%,97.0%and 97.3%,respectively.
文摘The phase equilibriua in the Ni Re Hf ternary system at 1173K were investigated by means of diffusion triple technique and electron microprobe analysis(EMPA). The experimental results indicate that two ternary intermetallics (α and β) and five binary intermetallics (Ni 3Hf, Ni 10 Hf 7, Ni 11 Hf 9, NiHf and NiHf 2) exist in the Ni Re Hf system at 1?173 K. A tentative isothermal section of this system at 1?173 K was constructed on the basis of experimental results. The isothermal section consists of nine three phase regions, five of which are supported by the experimental data.
基金Projects(52125306,21875286)supported by the National Natural Science Foundation of China。
文摘Ternary strategy has demonstrated great potential in promoting the power conversion efficiency(PCE)of bulk heterojunction organic solar cells(BHJ OSCs).Two new polymer donors,TPQ-2 F-2 Cl and TPQ-2 F-4 F,were synthesized with chlorinated and fluorinated aromatic side chains,respectively,which contributed to distinct noncovalent interactions.Compared with the PM 6:L 8-BO host system,the TPQ-2 F-2 Cl based ternary OSCs obtained enhanced exciton dissociation and more balanced carrier mobility.Moreover,benefiting from the favorable miscibility of the PM 6:L 8-BO:TPQ-2 F-2 Cl blend,the ternary blending film featured a well-defined fibrillar morphology and improved molecular ordering.Consequently,the optimal PM 6:L 8-BO:TPQ-2 F-2 Cl device achieved a more outstanding PCE of 18.2%,a higher open circuit voltage(V_(oc)),and a better fill factor(FF)in comparison with the binary device(PCE=17.7%).In contrast,the addition of TPQ-2 F-4 F would generate excessive aggregation of blend,thereby reducing the PCE of ternary OSCs(16.0%).This work shows a promising idea for designing efficient third component donor polymers.
基金supported by the Institutional Research Grant(Thailand Research Fund:IRG598004)
文摘The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.
基金Project(97.13966(97.11.15)) supported by the Deputy of Research and Technology of Arak University,Iran。
文摘Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetallic compounds at the interface of three series of samples were analyzed and compared.Depending on the Si content,a variety of ternary Al-Fe-Si intermetallic compounds(IMCs) such as Fe_(4)(Al,Si)_(13),Fe_(2) Al_(8) Si(τ_(5)),and Fe_(2) Al_(9) Si_(2)(τ_(6)) were formed at the interface.Mg element in 5356 filler material cannot contribute to the formation of Al-Fe intermetallic phases due to the positive mixing enthalpy of Mg-Fe.The presence of Mg enhances the hot cracking phenomenon near the Al-Fe intermetallic compound at the interface.Zn coating does not participate in intermetallic formation due to its evaporation during WB.It was concluded that the softening of the base metal in the heat-affected zone rather than the IMCs determines the joint efficiency.
基金This project was supported by the National Natural Science Foundation of China(70631004).
文摘The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.
文摘The oxidation of the ternary alloy Ni-15Cu-5Al in 1 × 105 Pa pure oxygen at 700 ℃ and 800 ℃ was studied. The results show that the behavior of the Ni-rich alloy is similar to that of the binary Ni-Al alloy with the same Al content in the form of an external NiO layer coupled to the internal oxidation of aluminium. The presence of 15%(mole fraction) Cu cannot modify substantially the values of relevant parameters affecting the transition from the internal to the external oxidation of aluminium. The presence of 5 % Al reduces the oxidation rate of the corresponding Ni-Cu alloy during the whole oxidation stages, though 5 % Al is still insufficient to form protective external alumina scales.
基金Project(2022YFC3900804)supported by the National Key Research and Development Program,ChinaProjects(2021JJ10058,2022JJ10074)supported by the Natural Science Foundation of Hunan Province of China。
文摘Recovering valuable metals from spent lithium-ion batteries(LIBs)for high value-added application is beneficial for global energy cycling and environmental protection.In this work,we obtain the high-performance N-doped Ni-Co-Mn(N-NCM)electrocatalyst from waste LIBs,for robust oxygen evolution application.Lithium-rich solution and NCM oxides are effectively separated from ternary cathode materials by sulfation roasting and low-temperature water leaching approach,in which the recovery efficiency of Li metal reaches nearly 100%.By facile NH_(3)treatment,the incorporation of N into NCM significantly increases the ratio of low-valence state Co^(2+)and Mn^(2+),and the formed Mn-N bond benefits the surface catalytic kinetics.Meanwhile,the N doping induces lattice expansion of the NCM,triggering tensile stress to favor the adsorption of the reactant.Thus,the optimized N-NCM electrocatalyst exhibits the superior overpotentials of 256 and 453 mV to achieve the current density of 10 and 100 mA/cm^(2),respectively,with a low Tafel slope of 37.3 mV/dec.This work provides a fresh avenue for recycling spent LIBs in the future to achieve sustainable development.