针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂...针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。展开更多
锂离子电池在充放电过程中存在膨胀力,其受电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)影响。对于储能磷酸铁锂电池,其膨胀力特性是有关储能电池系统电性能及安全性能的重要特性之一,而大容量储能磷酸铁锂电...锂离子电池在充放电过程中存在膨胀力,其受电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)影响。对于储能磷酸铁锂电池,其膨胀力特性是有关储能电池系统电性能及安全性能的重要特性之一,而大容量储能磷酸铁锂电池在全生命周期内膨胀力的演变特性及机理尚不清晰。本工作选择一款容量为280安时的磷酸铁锂电池为研究对象,将其组装成不同串数的模组,采用膨胀力夹具模拟其在实际储能模组中的应用场景,开展了循环耐久性测试,并对全SOC及全生命周期下电池模组膨胀力的演变规律进行了分析。研究结果显示:由于石墨和磷酸铁锂材料的结构特性,充电过程在约30%SOC和100%SOC有2次膨胀力峰值,放电过程也在100%SOC和30%SOC有2次膨胀力峰值。各膨胀力峰值随着电池的衰减呈现不同的演变规律,100%SOC时的膨胀力由最大值逐渐演变成最小值,30%SOC时的膨胀力演变成最大值。此外,在SOH衰减至约90%后,模组膨胀力与SOH呈线性相关,且电芯串联数量的增加没有改变模组最大膨胀力的增长趋势,1P12S模组的最大膨胀力在70%SOH时达到了2365 kgf。根据实测数据对模组的膨胀力仿真分析表明,模组主要零部件的设计能够满足全生命周期内的结构安全性能。该工作初步探究了磷酸铁锂电池模组的膨胀力特性,有助于为模组层级的膨胀力仿真和预测提供参考,为后期磷酸铁锂电池在储能系统模组的安全设计开发提供了支撑。展开更多
大规模分布式船舶储能系统(distributed energy storage system,DESS)可提高船舶微电网的冗余并保证运行安全。然而,不确定的船舶运行环境容易导致分布式储能运行特性不一致。在此背景下,该文提出一种含状态耦合约束的分布式船舶储能系...大规模分布式船舶储能系统(distributed energy storage system,DESS)可提高船舶微电网的冗余并保证运行安全。然而,不确定的船舶运行环境容易导致分布式储能运行特性不一致。在此背景下,该文提出一种含状态耦合约束的分布式船舶储能系统两层能量管理策略。首先,计及不确定航运环境影响,建立船舶储能系统寿命-功率特性耦合模型,量化其在不同循环寿命下的最大可用功率范围。随后,建立分布式储能系统两层能量管理策略,结合长时间尺度节能调度与短时间尺度功率分配控制,减少多时间尺度下不确定航运环境的影响;最终,通过HiL硬件在环实时仿真系统验证所提方法,与两种传统的能量管理方法相比,所提方法能够保证每个储能系统运行在安全出力范围内,且燃油经济性提高20.8%,微网母线电压暂降偏差最高降低73.5%。展开更多
针对高比例可再生能源接入引起“输-配网双向潮流”带来配电网电压管理难题,该文提出一种应对双向潮流的配电网电压管理策略。首先,挖掘变压器模型对配电网电压控制特性的影响机理,量化双向潮流下变压器高/低压母线电压控制特性。其次,...针对高比例可再生能源接入引起“输-配网双向潮流”带来配电网电压管理难题,该文提出一种应对双向潮流的配电网电压管理策略。首先,挖掘变压器模型对配电网电压控制特性的影响机理,量化双向潮流下变压器高/低压母线电压控制特性。其次,为保证储能电池运行安全,基于电池实验数据,构建包含电池健康状态(state of health,SoH)、荷电状态及功率状态耦合关系的储能系统调节可行域,并采用分段线性化方式建立实用控制域模型,实现不同SoH下对储能充放电能力的实时约束。最后,基于可再生能源的渗透水平差异,提出多层次协调电压控制策略,减少双向潮流下配电网电压越限。通过改进IEEE 33系统算例验证所提方法在不同可再生能源渗透率场景下提供有效电压管控措施的科学性和实用性。展开更多
针对配电网中分布式电源渗透率提高导致的潮流倒送、电压波动和供电能力不足等问题,文中提出一种基于储能特性的三端智能软开关(three-terminal intelligent soft open point, E-SOP)有源配电台区优化控制策略。首先,深入分析E-SOP的拓...针对配电网中分布式电源渗透率提高导致的潮流倒送、电压波动和供电能力不足等问题,文中提出一种基于储能特性的三端智能软开关(three-terminal intelligent soft open point, E-SOP)有源配电台区优化控制策略。首先,深入分析E-SOP的拓扑,建立其数学模型,为后续优化控制奠定基础。其次,提出一种基于电压-功率灵敏度的ESOP选址规划模型,以确定其最佳安装位置。在此基础上,构建以综合费用和电压偏差最小化为目标的优化模型,实现E-SOP容量配置。该模型通过锥松弛技术转换为二阶锥规划模型,并采用粒子群算法求解。最后,通过IEEE33节点柔性互联系统的仿真验证所提策略的有效性,并在IEEE 69节点系统中进一步验证其适用性和优越性。结果表明,相比传统无E-SOP互联系统,所提策略可使电压偏差降低2.24%,日均损耗减少50.41%,综合成本下降21.74%,适用于不同规模的配电系统。展开更多
文摘针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。
文摘锂离子电池在充放电过程中存在膨胀力,其受电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)影响。对于储能磷酸铁锂电池,其膨胀力特性是有关储能电池系统电性能及安全性能的重要特性之一,而大容量储能磷酸铁锂电池在全生命周期内膨胀力的演变特性及机理尚不清晰。本工作选择一款容量为280安时的磷酸铁锂电池为研究对象,将其组装成不同串数的模组,采用膨胀力夹具模拟其在实际储能模组中的应用场景,开展了循环耐久性测试,并对全SOC及全生命周期下电池模组膨胀力的演变规律进行了分析。研究结果显示:由于石墨和磷酸铁锂材料的结构特性,充电过程在约30%SOC和100%SOC有2次膨胀力峰值,放电过程也在100%SOC和30%SOC有2次膨胀力峰值。各膨胀力峰值随着电池的衰减呈现不同的演变规律,100%SOC时的膨胀力由最大值逐渐演变成最小值,30%SOC时的膨胀力演变成最大值。此外,在SOH衰减至约90%后,模组膨胀力与SOH呈线性相关,且电芯串联数量的增加没有改变模组最大膨胀力的增长趋势,1P12S模组的最大膨胀力在70%SOH时达到了2365 kgf。根据实测数据对模组的膨胀力仿真分析表明,模组主要零部件的设计能够满足全生命周期内的结构安全性能。该工作初步探究了磷酸铁锂电池模组的膨胀力特性,有助于为模组层级的膨胀力仿真和预测提供参考,为后期磷酸铁锂电池在储能系统模组的安全设计开发提供了支撑。
文摘大规模分布式船舶储能系统(distributed energy storage system,DESS)可提高船舶微电网的冗余并保证运行安全。然而,不确定的船舶运行环境容易导致分布式储能运行特性不一致。在此背景下,该文提出一种含状态耦合约束的分布式船舶储能系统两层能量管理策略。首先,计及不确定航运环境影响,建立船舶储能系统寿命-功率特性耦合模型,量化其在不同循环寿命下的最大可用功率范围。随后,建立分布式储能系统两层能量管理策略,结合长时间尺度节能调度与短时间尺度功率分配控制,减少多时间尺度下不确定航运环境的影响;最终,通过HiL硬件在环实时仿真系统验证所提方法,与两种传统的能量管理方法相比,所提方法能够保证每个储能系统运行在安全出力范围内,且燃油经济性提高20.8%,微网母线电压暂降偏差最高降低73.5%。
文摘针对高比例可再生能源接入引起“输-配网双向潮流”带来配电网电压管理难题,该文提出一种应对双向潮流的配电网电压管理策略。首先,挖掘变压器模型对配电网电压控制特性的影响机理,量化双向潮流下变压器高/低压母线电压控制特性。其次,为保证储能电池运行安全,基于电池实验数据,构建包含电池健康状态(state of health,SoH)、荷电状态及功率状态耦合关系的储能系统调节可行域,并采用分段线性化方式建立实用控制域模型,实现不同SoH下对储能充放电能力的实时约束。最后,基于可再生能源的渗透水平差异,提出多层次协调电压控制策略,减少双向潮流下配电网电压越限。通过改进IEEE 33系统算例验证所提方法在不同可再生能源渗透率场景下提供有效电压管控措施的科学性和实用性。
文摘针对配电网中分布式电源渗透率提高导致的潮流倒送、电压波动和供电能力不足等问题,文中提出一种基于储能特性的三端智能软开关(three-terminal intelligent soft open point, E-SOP)有源配电台区优化控制策略。首先,深入分析E-SOP的拓扑,建立其数学模型,为后续优化控制奠定基础。其次,提出一种基于电压-功率灵敏度的ESOP选址规划模型,以确定其最佳安装位置。在此基础上,构建以综合费用和电压偏差最小化为目标的优化模型,实现E-SOP容量配置。该模型通过锥松弛技术转换为二阶锥规划模型,并采用粒子群算法求解。最后,通过IEEE33节点柔性互联系统的仿真验证所提策略的有效性,并在IEEE 69节点系统中进一步验证其适用性和优越性。结果表明,相比传统无E-SOP互联系统,所提策略可使电压偏差降低2.24%,日均损耗减少50.41%,综合成本下降21.74%,适用于不同规模的配电系统。