期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
民用无人机事故致因文本挖掘和社会网络分析
1
作者 李柯 王东煌 罗帆 《安全与环境学报》 北大核心 2025年第7期2709-2716,共8页
为明确民用无人机事故致因及其关联性,借助文本挖掘技术完成122份民用无人机事故报告的结构化处理,采用词频-逆文档频率(Term Frequency-Inverse Document Frequency, TF-IDF)算法提取出23项事故致因关键词;运用社会网络分析(Social Net... 为明确民用无人机事故致因及其关联性,借助文本挖掘技术完成122份民用无人机事故报告的结构化处理,采用词频-逆文档频率(Term Frequency-Inverse Document Frequency, TF-IDF)算法提取出23项事故致因关键词;运用社会网络分析(Social Network Analysis, SNA)方法和Gephi、Ucinet等软件构建民用无人机事故致因共现网络,完成网络中心性分析和核心边缘结构分析,以了解各事故致因节点的重要性和网络结构特征。结果表明:机械结构故障、动力系统故障等源自无人机自身的致因是造成事故的主要原因;飞行失控、检查不足、天气意外因素等8项致因位于致因网络的核心区域,归属于核心致因,其余15项为边缘致因;基于核心致因构建并分析核心-边缘致因集合,有助于为民用无人机事故防控提供对策建议,从而促进低空经济产业健康有序发展。 展开更多
关键词 安全工程 文本挖掘 社会网络分析 词频-逆文档频率 无人机事故
在线阅读 下载PDF
基于文本挖掘的民航飞行风险评价指标研究
2
作者 汪磊 安佳宁 史少铭 《安全与环境学报》 北大核心 2025年第3期825-834,共10页
为定量评价民航飞行风险,研究提出一种基于文本挖掘的民航飞行风险评价指标识别方法。该方法聚焦于冲偏出跑道、可控飞行撞地、空中失控3类典型核心风险事件,收集全球运输航空2008-2023年相关事故调查报告共210篇。利用词频与逆文档频... 为定量评价民航飞行风险,研究提出一种基于文本挖掘的民航飞行风险评价指标识别方法。该方法聚焦于冲偏出跑道、可控飞行撞地、空中失控3类典型核心风险事件,收集全球运输航空2008-2023年相关事故调查报告共210篇。利用词频与逆文档频率算法(Term Frequency-Inverse Document Frequency,TF-IDF)和潜在狄利克雷分布主题模型(Latent Dirichlet Allocation,LDA)提取语料中主题及关键词,参考航空公司飞行品质监控标准文件,归纳3类核心风险评价指标,并结合相关文献规范,构建民航飞行风险评价指标体系。采集某航空公司B737-800机型60条航班数据,对评价指标体系的合理性开展实例验证。结果显示:该方法能够客观高效地识别飞行风险指标,实现了对5名飞行员个体风险的量化排序。研究结果可应用于飞行风险评价,为后续建立风险量化模型奠定基础。 展开更多
关键词 安全工程 风险评价 文本挖掘 词频与逆文档频率 潜在迪利克雷分布
在线阅读 下载PDF
基于Document Triage的TF-IDF算法的改进 被引量:14
3
作者 李镇君 周竹荣 《计算机应用》 CSCD 北大核心 2015年第12期3506-3510,3514,共6页
针对TF-IDF算法在加权时没有考虑特征词本身在文档中重要度的问题,提出利用用户阅读时的阅读行为来改进TF-IDF。将Document Triage引入到TF-IDF中,利用IPM收集用户阅读中行为的相关信息,计算文档评分。由于用户的标注内容往往是文章的... 针对TF-IDF算法在加权时没有考虑特征词本身在文档中重要度的问题,提出利用用户阅读时的阅读行为来改进TF-IDF。将Document Triage引入到TF-IDF中,利用IPM收集用户阅读中行为的相关信息,计算文档评分。由于用户的标注内容往往是文章的重要内容,或者反映了用户的兴趣。因此,赋予用户标注词项更大的权重,将文档评分和用户的标注信息等作为因子引入到TF-IDF中,设计出改进的加权算法DT-TF-IDF。实验结果表明,相对传统TF-IDF算法,DT-TF-IDF的查全率、查准率,以及查准率和查全率的调和均值都有了一定的提高。DT-TF-IDF算法比传统TF-IDF算法更加有效,提高了文本相似度计算的准确性。 展开更多
关键词 TF-IDF document TRIAGE 标引 加权
在线阅读 下载PDF
基于改进TF-IDF与BERT的领域情感词典构建方法 被引量:6
4
作者 蒋昊达 赵春蕾 +1 位作者 陈瀚 王春东 《计算机科学》 CSCD 北大核心 2024年第S01期150-158,共9页
领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于... 领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于改进词频-逆文档频率(TF-IDF)与BERT的领域情感词典构建方法。该方法在筛选领域候选情感词阶段对TF-IDF算法进行改进,将隐含狄利克雷分布(LDA)算法与改进后的TF-IDF算法结合,进行领域性修正,提升了所筛选候选情感词的领域性;在候选情感词极性判断阶段,将情感倾向点互信息算法(SO-PMI)与BERT结合,利用领域情感词微调BERT分类模型,提高了判断领域候选情感词情感极性的准确程度。在不同领域的用户评论数据集上进行实验,结果表明,该方法可以提高所构建领域情感词典的质量,使用该方法构建的领域情感词典用于汽车领域和手机领域文本情感分析的F1值分别达到78.02%和88.35%。 展开更多
关键词 情感分析 领域情感词典 词频-逆文档频率 隐含狄利克雷分布 情感倾向点互信息算法 BERT模型
在线阅读 下载PDF
社会网络环境下双驱动DEMATEL的群智知识融合应急决策方法 被引量:5
5
作者 陈兆芳 黄鹏城 黄文翰 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2336-2347,共12页
针对多属性应急群决策中决策属性缺少数据支持和公众难以参与决策过程的问题,提出了一种使用信任网络计算专家权重和融合公众知识与专家知识的双驱动模型的应急决策方法。首先,考虑传统模型只能依赖主观经验的不足,通过分析社交媒体中... 针对多属性应急群决策中决策属性缺少数据支持和公众难以参与决策过程的问题,提出了一种使用信任网络计算专家权重和融合公众知识与专家知识的双驱动模型的应急决策方法。首先,考虑传统模型只能依赖主观经验的不足,通过分析社交媒体中的文本数据来获得公众意见,并使用词频-逆文档频率算法(Term Frequency-Inverse Document Frequency, TF-IDF)提取意见中的关键信息,以公众大数据来获得数据驱动因素,同时,通过决策专家提供的专家知识,为决策过程提供知识驱动因素,构成双驱动的决策实验室分析法(Decision Making Trial and Evaluation Laboratory, DEMATEL)模型来建立评价属性体系,模型中影响因素的相互作用程度由公众大数据与专家评价共同决定,以得到公众知识数据与专家知识评价融合的结果;其次,使用社会网络表示专家之间的信任关系与信任强度,并通过Louvain算法对专家进行聚类,通过社会网络中节点的度中心性与接近中心性,得到个体的权重进而计算出各聚类权重,使用直觉模糊加权平均算子(Iterative Fuzzy Weighted Averaging, IFWA)结合决策偏好与属性权重,通过得分函数计算备选方案的得分,并依据得分结果对方案排序以得到最优的解决方案;最后,结合“7·20”郑州市突发暴雨案例证明了本方法的可行性和有效性。 展开更多
关键词 公共安全 决策实验室分析法(DEMATEL) 应急决策 词频-逆文档频率算法(TF-IDF) 群智融合
在线阅读 下载PDF
语义识别驱动的化工泄漏事故事前预防研究 被引量:3
6
作者 刘勤明 董宏霖 孔得朝 《安全与环境学报》 CAS CSCD 北大核心 2024年第12期4734-4742,共9页
化工泄漏事故报告蕴含事故信息量大,但利用度低,仅依赖传统的事故分析理论和方法对事故后果进行分析统计难以实现事前预防、控制损失最小化的目的,因此,构建了语义识别驱动的化工泄漏事故事前预防研究框架,基于潜在狄利克雷分配(Latent ... 化工泄漏事故报告蕴含事故信息量大,但利用度低,仅依赖传统的事故分析理论和方法对事故后果进行分析统计难以实现事前预防、控制损失最小化的目的,因此,构建了语义识别驱动的化工泄漏事故事前预防研究框架,基于潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)主题模型提取化工泄漏事故致因主题及关键词,利用关键词共现网络分析进行致因中心性和关联度分析,使用因子分析进行致因影响因子的计算,实现了对化工泄漏事故报告潜在信息的挖掘和有效分析。结果表明:通过LDA模型可以计算得到化工泄漏事故致因主题,得出安全意识缺失、物料逸出、设备故障等5个聚类;基于改进点互信息(Pointwise Mutual Information,PMI)的关键词共现网络可以得到事故的关键致因、环节、场所和事故类型,其中最重要且关联度较高的致因是人员操作不当和现场管理不力;最后,通过因子分析得到影响后果最严重的致因是危险作业环境,其次是违规操作或操作不当。提出的研究框架在更深入挖掘利用海量事故致因信息的同时,减少了事故致因评价指标的主观性,为结构复杂、非单一标准的事故报告文本信息提取提供了新的思路,同时将语义识别拓展到化工泄漏事故预防领域,有助于化工泄漏事故的风险识别、预测与防控。 展开更多
关键词 安全社会工程 化工事故 文本挖掘 语义识别 词频逆文档频率算法 潜在狄利克雷分配主题模型
在线阅读 下载PDF
基于深度特征融合的协同推荐算法 被引量:1
7
作者 王成 《南京理工大学学报》 CAS CSCD 北大核心 2024年第4期460-468,共9页
深度神经网络存在数据稀疏性难题和推荐精度不高的问题,为此提出一种基于深度特征融合的协同推荐算法,通过将深度神经网络与协同过滤算法相融合来改善问题。首先利用二次多项式回归模型对用户-项目评分矩阵进行特征提取;其次利用深度神... 深度神经网络存在数据稀疏性难题和推荐精度不高的问题,为此提出一种基于深度特征融合的协同推荐算法,通过将深度神经网络与协同过滤算法相融合来改善问题。首先利用二次多项式回归模型对用户-项目评分矩阵进行特征提取;其次利用深度神经网络对所输入的潜在特征进行训练,生成用户-项目评分;最后利用词频-逆向文件频率算法所生成的推荐候选集,融合用户-项目评分并最终输出推荐结果。利用MovieLens评分数据进行实验,该文混合推荐算法的平均绝对差(MAE)和均方根误差(RMSE)分别为0.7459、0.8886,比传统深度神经网络分别提高14.143%与24.341%,也优于对照组的混合推荐模型。 展开更多
关键词 深度神经网络 二次多项式 词频-逆向文件频率 特征融合 相似度
在线阅读 下载PDF
一种基于聚类的PU主动文本分类方法 被引量:24
8
作者 刘露 彭涛 +1 位作者 左万利 戴耀康 《软件学报》 EI CSCD 北大核心 2013年第11期2571-2583,共13页
文本分类是信息检索的关键问题之一.提取更多的可信反例和构造准确高效的分类器是PU(positive and unlabeled)文本分类的两个重要问题.然而,在现有的可信反例提取方法中,很多方法提取的可信反例数量较少,构建的分类器质量有待提高.分别... 文本分类是信息检索的关键问题之一.提取更多的可信反例和构造准确高效的分类器是PU(positive and unlabeled)文本分类的两个重要问题.然而,在现有的可信反例提取方法中,很多方法提取的可信反例数量较少,构建的分类器质量有待提高.分别针对这两个重要步骤提供了一种基于聚类的半监督主动分类方法.与传统的反例提取方法不同,利用聚类技术和正例文档应与反例文档共享尽可能少的特征项这一特点,从未标识数据集中尽可能多地移除正例,从而可以获得更多的可信反例.结合SVM主动学习和改进的Rocchio构建分类器,并采用改进的TFIDF(term frequency inverse document frequency)进行特征提取,可以显著提高分类的准确度.分别在3个不同的数据集中测试了分类结果(RCV1,Reuters-21578,20 Newsgoups).实验结果表明,基于聚类寻找可信反例可以在保持较低错误率的情况下获取更多的可信反例,而且主动学习方法的引入也显著提升了分类精度. 展开更多
关键词 PU(FIositive and unlabeled)文本分类 聚类 TFIPNDF(term frequency inverse positive negative document frequency) 主动学习 可信反例 改进的Rocchio
在线阅读 下载PDF
基于词频统计的文本关键词提取方法 被引量:79
9
作者 罗燕 赵书良 +2 位作者 李晓超 韩玉辉 丁亚飞 《计算机应用》 CSCD 北大核心 2016年第3期718-725,共8页
针对传统TF-IDF算法关键词提取效率低下及准确率欠佳的问题,提出一种基于词频统计的文本关键词提取方法。首先,通过齐普夫定律推导出文本中同频词数的计算公式;其次,根据同频词数计算公式确定文本中各频次词语所占比重,发现文本中绝大... 针对传统TF-IDF算法关键词提取效率低下及准确率欠佳的问题,提出一种基于词频统计的文本关键词提取方法。首先,通过齐普夫定律推导出文本中同频词数的计算公式;其次,根据同频词数计算公式确定文本中各频次词语所占比重,发现文本中绝大多数是低频词;最后,将词频统计规律应用于关键词提取,提出基于词频统计的TFIDF算法。采用中、英文文本实验数据集进行仿真实验,其中推导出的同频词数计算公式平均相对误差未超过0.05;确立的各频次词语所占比重的最大误差绝对值为0.04;提出的基于词频统计的TF-IDF算法与传统TF-IDF算法相比,平均查准率、平均查全率和平均F1度量均有提高,而平均运行时间则均有降低。实验结果表明,在文本关键词提取中,基于词频统计的TF-IDF算法在查准率、查全率及F1指标上均优于传统TF-IDF算法,并能够有效减少关键词提取运行时间。 展开更多
关键词 词频统计 齐普夫定律 同频词 关键词提取 TF-IDF算法
在线阅读 下载PDF
TFIDF算法研究综述 被引量:223
10
作者 施聪莺 徐朝军 杨晓江 《计算机应用》 CSCD 北大核心 2009年第B06期167-170,180,共5页
文本分类中特征项权重的赋予对于分类效果有较大的影响,TFIDF算法是权重计算的重要算法之一。在回顾TFIDF算法发展历史的基础上,考察了其固有缺陷,总结诸多学者对其的改进方法,并对TFIDF算法新的应用领域进行了概括,并通过实验验证相关... 文本分类中特征项权重的赋予对于分类效果有较大的影响,TFIDF算法是权重计算的重要算法之一。在回顾TFIDF算法发展历史的基础上,考察了其固有缺陷,总结诸多学者对其的改进方法,并对TFIDF算法新的应用领域进行了概括,并通过实验验证相关改进算法,为读者更好地应用TFIDF算法提供参考。 展开更多
关键词 TFIDF 文本分类 VSM
在线阅读 下载PDF
基于信息增益与信息熵的TFIDF算法 被引量:48
11
作者 李学明 李海瑞 +1 位作者 薛亮 何光军 《计算机工程》 CAS CSCD 2012年第8期37-40,共4页
传统的特征词权重算法TFIDF忽略了特征词在类内、类间的分布对其权重的影响。针对该问题,引入信息熵的概念,对基于信息增益的TFIDF算法(TFIDFIG)进行改进,提出一种基于信息增益与信息熵的TFIDF算法(TFIDFIGE)。实验结果表明,与传统的TF... 传统的特征词权重算法TFIDF忽略了特征词在类内、类间的分布对其权重的影响。针对该问题,引入信息熵的概念,对基于信息增益的TFIDF算法(TFIDFIG)进行改进,提出一种基于信息增益与信息熵的TFIDF算法(TFIDFIGE)。实验结果表明,与传统的TFIDF算法和TFIDFIG算法相比,TFIDFIGE算法的查准率和查全率较高。 展开更多
关键词 文本分类 信息增益 信息熵 TFIDF算法
在线阅读 下载PDF
基于VSM的文本相似度计算的研究 被引量:101
12
作者 郭庆琳 李艳梅 唐琦 《计算机应用研究》 CSCD 北大核心 2008年第11期3256-3258,共3页
文本相似度的计算作为其他文本信息处理的基础和关键,其计算准确率和效率直接影响其他文本信息处理的结果。提出改进的DF算法和TD-IDF算法,一方面利用了DF算法具有线性的时间复杂度,比较适合大规模文本处理的特点,并通过适当增加关键词... 文本相似度的计算作为其他文本信息处理的基础和关键,其计算准确率和效率直接影响其他文本信息处理的结果。提出改进的DF算法和TD-IDF算法,一方面利用了DF算法具有线性的时间复杂度,比较适合大规模文本处理的特点,并通过适当增加关键词的方法,弥补了其对个别有用信息错误过滤的不足;另一方面,利用特征项在特征选择阶段的权重对TD-IDF方法进行加权处理,在不增加开销的情况下扩大了文档集的规模,还提高了相似度计算的精确度。 展开更多
关键词 文本相似度 特征选择 词频—逆文档频率法 向量空间模型
在线阅读 下载PDF
基于TFIDF的特征选择方法 被引量:23
13
作者 王美方 刘培玉 朱振方 《计算机工程与设计》 CSCD 北大核心 2007年第23期5795-5796,5799,共3页
在文本分类系统中,特征选择方法是一种有效的降维方法。在分析了几种常用的特征选择评价函数之后,将权值计算函数应用于特征选择,并基于改进的TFIDF方法提出了一种新的评价函数,它将类别信息引入到特征项中,提取出与类别相关的特征项,... 在文本分类系统中,特征选择方法是一种有效的降维方法。在分析了几种常用的特征选择评价函数之后,将权值计算函数应用于特征选择,并基于改进的TFIDF方法提出了一种新的评价函数,它将类别信息引入到特征项中,提取出与类别相关的特征项,弥补了TFIDF的缺陷。实验证明该方法简单可行,有助于提高所选特征子集的有效性。 展开更多
关键词 特征选择 术语频率 逆文档频率 文本分类 评价函数
在线阅读 下载PDF
基于文档频率的特征选择方法 被引量:27
14
作者 杨凯峰 张毅坤 李燕 《计算机工程》 CAS CSCD 北大核心 2010年第17期33-35,38,共4页
传统的文档频率(DF)方法在进行特征选择时仅考虑特征词在类别中出现的DF,没有考虑特征词在每篇文档中出现的词频率(TF)问题。针对该问题,基于特征词在每篇文档中出现的TF,结合特征词在类别中出现的DF提出特征选择的新算法,并使用支持向... 传统的文档频率(DF)方法在进行特征选择时仅考虑特征词在类别中出现的DF,没有考虑特征词在每篇文档中出现的词频率(TF)问题。针对该问题,基于特征词在每篇文档中出现的TF,结合特征词在类别中出现的DF提出特征选择的新算法,并使用支持向量机方法训练分类器。实验结果表明,在进行特征选择时,考虑高词频特征词对类别的贡献,可提高传统DF方法的分类性能。 展开更多
关键词 文本分类 特征选择 文档频率 词频率 支持向量机
在线阅读 下载PDF
融合TF-IDF和LDA的中文FastText短文本分类方法 被引量:33
15
作者 冯勇 屈渤浩 +2 位作者 徐红艳 王嵘冰 张永刚 《应用科学学报》 CAS CSCD 北大核心 2019年第3期378-388,共11页
FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocatio... FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocation, LDA)的中文FastText短文本分类方法.该方法在FastText文本分类模型的输入阶段对n元语法模型处理后的词典进行TF-IDF筛选,使用LDA模型进行语料库主题分析,依据所得结果对特征词典进行补充,从而在计算输入词序列向量均值时偏向高区分度的词条,使其更适用于中文短文本分类环境.对比实验结果可知,所提方法在中文短文本分类方面具有更高的精确率. 展开更多
关键词 中文短文本分类 FastText 词频-逆文本频率 词向量 隐含狄利克雷分布
在线阅读 下载PDF
一种改进的TFIDF网页关键词提取方法 被引量:31
16
作者 李静月 李培峰 朱巧明 《计算机应用与软件》 CSCD 2011年第5期25-27,共3页
传统TFIDF关键词提取方法虽然实现起来简单,时间复杂度低,但是效果并不理想,难以获得对文本内容起到关键性作用的特征。提出了一种在考虑中文文本结构特征和中文词语词性特征的基础上,借助扩展的同义词词林,利用改进的TFIDF公式来提取... 传统TFIDF关键词提取方法虽然实现起来简单,时间复杂度低,但是效果并不理想,难以获得对文本内容起到关键性作用的特征。提出了一种在考虑中文文本结构特征和中文词语词性特征的基础上,借助扩展的同义词词林,利用改进的TFIDF公式来提取的方法。实验结果表明:该方法明显优于传统方法,能够抽取到令人满意的结果。 展开更多
关键词 文本结构 关键词抽取 TFIDF
在线阅读 下载PDF
基于TFIDF文本特征加权方法的改进研究 被引量:37
17
作者 张保富 施化吉 马素琴 《计算机应用与软件》 CSCD 2011年第2期17-20,共4页
针对传统TFIDF方法将文档集作为整体来处理,并没有考虑到特征项在类间和类内的分布情况的不足,提出一种结合信息熵的TFIDF改进方法。该方法采用结合特征项在类间和类内信息分布熵来调整TFIDF特征项的权重计算,避免了那些对分类没有贡献... 针对传统TFIDF方法将文档集作为整体来处理,并没有考虑到特征项在类间和类内的分布情况的不足,提出一种结合信息熵的TFIDF改进方法。该方法采用结合特征项在类间和类内信息分布熵来调整TFIDF特征项的权重计算,避免了那些对分类没有贡献的特征项被赋予较大权值的缺陷,能更有效计算文本特征项的权重。实验结果表明该方法提高了文本分类的精确度和召回率,是一种比较有效的文本特征加权方法。 展开更多
关键词 TFIDF 文本分类 特征加权 向量空间模型
在线阅读 下载PDF
一种基于词共现图的文档主题词自动抽取方法 被引量:30
18
作者 耿焕同 蔡庆生 +1 位作者 于琨 赵鹏 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期156-162,共7页
主题词抽取是文本自动处理的基础性工作.在对现有主题词抽取方法深入研究的基础上,提出了一种基于词共现图的文档主题词自动抽取方法;该方法以基于词频统计方法为基础,利用在词共现图形成的主题信息以及不同主题间的连接特征信息自动地... 主题词抽取是文本自动处理的基础性工作.在对现有主题词抽取方法深入研究的基础上,提出了一种基于词共现图的文档主题词自动抽取方法;该方法以基于词频统计方法为基础,利用在词共现图形成的主题信息以及不同主题间的连接特征信息自动地提取文档中的主题词,旨在找出一些非高频词且又对主题贡献大的词.实验表明了该抽取方法抽取出的主题词更能准确地符合了作者的主题. 展开更多
关键词 自然语言处理 词共现图 主题词 TFIDF
在线阅读 下载PDF
基于词频-逆文件频率的错误定位方法 被引量:3
19
作者 张卓 雷晏 +3 位作者 毛晓光 常曦 薛建新 熊庆宇 《软件学报》 EI CSCD 北大核心 2020年第11期3448-3460,共13页
错误定位方法大多通过分析语句覆盖信息来标识出导致程序失效的可疑语句.其中,语句覆盖信息通常以语句执行或语句未执行的二进制状态信息来表示.然而,该二进制状态信息仅表明该语句是否被执行的信息,无法体现该语句在具体执行中的重要程... 错误定位方法大多通过分析语句覆盖信息来标识出导致程序失效的可疑语句.其中,语句覆盖信息通常以语句执行或语句未执行的二进制状态信息来表示.然而,该二进制状态信息仅表明该语句是否被执行的信息,无法体现该语句在具体执行中的重要程度,可能会降低错误定位的有效性.为了解决这个问题,提出了基于词频-逆文件频率的错误定位方法.该方法采用词频-逆文件频率技术识别出单个测试用例中语句的影响程度高低,从而构建出具有语句重要程度识别度的信息模型,并基于该模型来计算语句的可疑值.实验结果表明,该方法大幅提升了错误定位的效能. 展开更多
关键词 错误定位 词频 逆文件频率 可疑值
在线阅读 下载PDF
基于词频统计的个性化信息过滤技术 被引量:12
20
作者 张国印 陈先 皮鹏 《哈尔滨工程大学学报》 EI CAS CSCD 2003年第1期63-67,共5页
对Internet信息进行过滤,筛选出与用户兴趣最相符的文档,是智能搜索引擎要解决的一个重要问题.本文在介绍搜索引擎基本原理的基础上,提出了一种文档学习和用户个性词典构建的实现方法,其中包括内码转换、分词、摘词处理、用户个性词典... 对Internet信息进行过滤,筛选出与用户兴趣最相符的文档,是智能搜索引擎要解决的一个重要问题.本文在介绍搜索引擎基本原理的基础上,提出了一种文档学习和用户个性词典构建的实现方法,其中包括内码转换、分词、摘词处理、用户个性词典的构建及词条权值调整等环节.然后提出了一种基于词频统计的个性化文档过滤算法,该算法对传统的向量空间模型法做了改进,使之能够更好地计算文档与用户个性词典之间的相关度,根据用户的兴趣爱好对文档进行相关度的过滤、排序,并给出了实验数据.实验结果表明该方法较好地解决了智能搜索引擎中Internet信息过滤、排序的问题. 展开更多
关键词 搜索引擎 文档过滤 向量空间模型法 词频统计 个性词典
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部