期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
基于Document Triage的TF-IDF算法的改进 被引量:14
1
作者 李镇君 周竹荣 《计算机应用》 CSCD 北大核心 2015年第12期3506-3510,3514,共6页
针对TF-IDF算法在加权时没有考虑特征词本身在文档中重要度的问题,提出利用用户阅读时的阅读行为来改进TF-IDF。将Document Triage引入到TF-IDF中,利用IPM收集用户阅读中行为的相关信息,计算文档评分。由于用户的标注内容往往是文章的... 针对TF-IDF算法在加权时没有考虑特征词本身在文档中重要度的问题,提出利用用户阅读时的阅读行为来改进TF-IDF。将Document Triage引入到TF-IDF中,利用IPM收集用户阅读中行为的相关信息,计算文档评分。由于用户的标注内容往往是文章的重要内容,或者反映了用户的兴趣。因此,赋予用户标注词项更大的权重,将文档评分和用户的标注信息等作为因子引入到TF-IDF中,设计出改进的加权算法DT-TF-IDF。实验结果表明,相对传统TF-IDF算法,DT-TF-IDF的查全率、查准率,以及查准率和查全率的调和均值都有了一定的提高。DT-TF-IDF算法比传统TF-IDF算法更加有效,提高了文本相似度计算的准确性。 展开更多
关键词 tf-idf document TRIAGE 标引 加权
在线阅读 下载PDF
基于改进TF-IDF与BERT的领域情感词典构建方法 被引量:10
2
作者 蒋昊达 赵春蕾 +1 位作者 陈瀚 王春东 《计算机科学》 CSCD 北大核心 2024年第S01期150-158,共9页
领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于... 领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于改进词频-逆文档频率(TF-IDF)与BERT的领域情感词典构建方法。该方法在筛选领域候选情感词阶段对TF-IDF算法进行改进,将隐含狄利克雷分布(LDA)算法与改进后的TF-IDF算法结合,进行领域性修正,提升了所筛选候选情感词的领域性;在候选情感词极性判断阶段,将情感倾向点互信息算法(SO-PMI)与BERT结合,利用领域情感词微调BERT分类模型,提高了判断领域候选情感词情感极性的准确程度。在不同领域的用户评论数据集上进行实验,结果表明,该方法可以提高所构建领域情感词典的质量,使用该方法构建的领域情感词典用于汽车领域和手机领域文本情感分析的F1值分别达到78.02%和88.35%。 展开更多
关键词 情感分析 领域情感词典 词频-逆文档频率 隐含狄利克雷分布 情感倾向点互信息算法 BERT模型
在线阅读 下载PDF
民用无人机事故致因文本挖掘和社会网络分析
3
作者 李柯 王东煌 罗帆 《安全与环境学报》 北大核心 2025年第7期2709-2716,共8页
为明确民用无人机事故致因及其关联性,借助文本挖掘技术完成122份民用无人机事故报告的结构化处理,采用词频-逆文档频率(Term Frequency-Inverse Document Frequency, TF-IDF)算法提取出23项事故致因关键词;运用社会网络分析(Social Net... 为明确民用无人机事故致因及其关联性,借助文本挖掘技术完成122份民用无人机事故报告的结构化处理,采用词频-逆文档频率(Term Frequency-Inverse Document Frequency, TF-IDF)算法提取出23项事故致因关键词;运用社会网络分析(Social Network Analysis, SNA)方法和Gephi、Ucinet等软件构建民用无人机事故致因共现网络,完成网络中心性分析和核心边缘结构分析,以了解各事故致因节点的重要性和网络结构特征。结果表明:机械结构故障、动力系统故障等源自无人机自身的致因是造成事故的主要原因;飞行失控、检查不足、天气意外因素等8项致因位于致因网络的核心区域,归属于核心致因,其余15项为边缘致因;基于核心致因构建并分析核心-边缘致因集合,有助于为民用无人机事故防控提供对策建议,从而促进低空经济产业健康有序发展。 展开更多
关键词 安全工程 文本挖掘 社会网络分析 词频-逆文档频率 无人机事故
在线阅读 下载PDF
滚动轴承的退化特征信息融合与剩余寿命预测 被引量:1
4
作者 张建宇 王留震 +1 位作者 肖勇 马雅楠 《中国机械工程》 北大核心 2025年第7期1553-1561,共9页
针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融... 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。 展开更多
关键词 稀疏自编码器特征融合 双向长短期记忆网络预测模型 滚动轴承 反双曲特征指标 频域谐波退化因子
在线阅读 下载PDF
融合TF-IDF和LDA的中文FastText短文本分类方法 被引量:33
5
作者 冯勇 屈渤浩 +2 位作者 徐红艳 王嵘冰 张永刚 《应用科学学报》 CAS CSCD 北大核心 2019年第3期378-388,共11页
FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocatio... FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocation, LDA)的中文FastText短文本分类方法.该方法在FastText文本分类模型的输入阶段对n元语法模型处理后的词典进行TF-IDF筛选,使用LDA模型进行语料库主题分析,依据所得结果对特征词典进行补充,从而在计算输入词序列向量均值时偏向高区分度的词条,使其更适用于中文短文本分类环境.对比实验结果可知,所提方法在中文短文本分类方面具有更高的精确率. 展开更多
关键词 中文短文本分类 FastText 词频-逆文本频率 词向量 隐含狄利克雷分布
在线阅读 下载PDF
基于TF-IDF改进算法的聚焦主题网络爬虫 被引量:16
6
作者 王景中 邱铜相 《计算机应用》 CSCD 北大核心 2015年第10期2901-2904,2919,共5页
针对传统的TF-IDF算法、K-means算法、自适应遗传算法在网络检索结果中含有大量不相关数据、语义检索准确性不高的问题,研究了TF-IDF算法的改进及其在语义检索中的应用。将正则表达式和语义分析技术相结合,从而实现对TF-IDF算法的改进... 针对传统的TF-IDF算法、K-means算法、自适应遗传算法在网络检索结果中含有大量不相关数据、语义检索准确性不高的问题,研究了TF-IDF算法的改进及其在语义检索中的应用。将正则表达式和语义分析技术相结合,从而实现对TF-IDF算法的改进。利用语义库对搜索主题进行描述,根据正则原子语义的重要性和在网页标签中的不同位置进行加权计算,得到正则原子在文档中的相似度。通过空间向量模型对文档相似度和主题模型进行余弦运算,从而获取最终的搜索结果。最后,将改进的TF-IDF算法、传统的TF-IDF算法、K-means算法和自适应遗传算法运用于聚焦主题网络爬虫中,对其检索结果进行了对比分析。计算结果表明,在聚焦主题网络爬虫语义分析的垂直搜索中,改进TF-IDF算法的相似度准确率比传统的TF-IDF算法检索准确率提高了17.1个百分点,遗漏率降低了7.76个百分点;比K-means算法检索准确率提高6个百分点;比自适应遗传算法检索准确率提高了8.1个百分点。总之,改进的TF-IDF算法可以有效地提高文档相似度检测的准确率,很好地改善聚焦主题网络爬虫在语义分析中的缺陷。 展开更多
关键词 网络爬虫 语义分析 搜索引擎 tf-idf 主题爬虫 文档相似度
在线阅读 下载PDF
结合TF-IDF的企业生产隐患关联预警及可视化研究 被引量:14
7
作者 胡瑾秋 张曦月 吴志强 《中国安全科学学报》 CAS CSCD 北大核心 2019年第7期170-176,共7页
为有效利用企业在日常管理中积累的大量生产事故隐患记录,实现隐患预警,解决人工分析数据效率低、主观性强等问题,构建结合词频率-逆文档频率(TF-IDF)的企业生产隐患关联预警可视化模型。首先,运用先验(Apriori)关联规则算法挖掘各隐患... 为有效利用企业在日常管理中积累的大量生产事故隐患记录,实现隐患预警,解决人工分析数据效率低、主观性强等问题,构建结合词频率-逆文档频率(TF-IDF)的企业生产隐患关联预警可视化模型。首先,运用先验(Apriori)关联规则算法挖掘各隐患间的潜在联系,获取信息中的隐藏价值;然后,引入TF-IDF算法优化关联规则,找出隐患间的关键规则;最后,运用可视化技术直观地展现挖掘结果。研究表明:可视化模型能快速、准确地实现隐患预警;对关联规则的优化,解决了Apriori算法支持度依赖性强的问题;挖掘结果能为企业安全管理者提供整改方向与依据。 展开更多
关键词 词频率-逆文档频率(tf-idf) 先验(Apriori)关联分析 优化排序 隐患预警 文本可视化
在线阅读 下载PDF
基于TF-IDF算法的P2P贷款违约预测模型 被引量:10
8
作者 章宁 陈钦 《计算机应用》 CSCD 北大核心 2018年第10期3042-3047,共6页
针对目前P2P贷款违约预测模型受限于借贷双方信息不对称性,未考虑投资人之间差异性的问题,提出了基于信息检索词频-逆文本频率(TF-IDF)算法的P2P贷款违约预测模型。首先以投资效用理论为基础,利用投资人历史投资收益率、贷款利率出价等... 针对目前P2P贷款违约预测模型受限于借贷双方信息不对称性,未考虑投资人之间差异性的问题,提出了基于信息检索词频-逆文本频率(TF-IDF)算法的P2P贷款违约预测模型。首先以投资效用理论为基础,利用投资人历史投资收益率、贷款利率出价等信息,建立基于投资人效用的贷款违约预测模型;然后,借鉴信息检索TF-IDF算法,构造投资人逆向投资比例因子,对投资人差异性进行量化度量,优化模型中投资人权重计算因子。实验结果表明,该模型预测准确度与其他模型相比平均提高了6%左右,并在不同的测试数据集上都保持最优。 展开更多
关键词 贷款违约预测 效用理论 信息检索 词频逆文本频率 个人对个人借贷 曲线下面积
在线阅读 下载PDF
基于TF-IDF和VOSviewer的我国应急救援现状可视化分析 被引量:6
9
作者 黄萍 张文龙 +2 位作者 叶圣琳 余君 余龙星 《中国安全科学学报》 CAS CSCD 北大核心 2023年第11期196-205,共10页
为有效利用消防救援队伍的实战记录资料挖掘应急救援战例成功经验,结合词频-逆文档频率(TF-IDF)算法和VOSviewer文献可视化分析技术,构建战例资料分析模型,分析战例成功与失败的共性规律和特点,总结我国应急救援现状及发展趋势。模型以2... 为有效利用消防救援队伍的实战记录资料挖掘应急救援战例成功经验,结合词频-逆文档频率(TF-IDF)算法和VOSviewer文献可视化分析技术,构建战例资料分析模型,分析战例成功与失败的共性规律和特点,总结我国应急救援现状及发展趋势。模型以2007—2019年间共185起应急救援典型战例为数据库,按照自然灾害、交通事故、建筑坍塌、危化品泄漏、火灾扑救等应急救援行动类型展开分析。结果表明:我国应急救援行动的影响因素主要表现在人(救援队伍)、机(装备技术)、环(环境)、管(管理)4个方面。其中,环境因素的影响几乎都是负面的,其他3个因素均有正负面影响。此外,不同应急救援行动类型的主导影响因素存在差异,自然灾害突出“机”;交通事故突出“管”;建筑坍塌突出“机”“环”;危化品泄漏在“人机环管”4个方面均有突出问题;火灾救援突出“机”。 展开更多
关键词 词频-逆文档频率(tf-idf) VOSviewer 应急救援 消防救援 可视化分析 战例分析
在线阅读 下载PDF
基于改进的TF-IDF软件测试错误信息分析方法 被引量:1
10
作者 王茹 严明 王柳舒 《计算机应用》 CSCD 北大核心 2016年第A02期259-261,共3页
针对软件测试领域人工分析测试用例错误信息工作量大、时间效率低的问题,提出了一种基于改进的词频-逆文本词频(TF-IDF)软件测试错误信息文本分析方法。首先,根据错误信息文本的特点对目标错误信息文本进行预处理,减少了干扰信息,缩短... 针对软件测试领域人工分析测试用例错误信息工作量大、时间效率低的问题,提出了一种基于改进的词频-逆文本词频(TF-IDF)软件测试错误信息文本分析方法。首先,根据错误信息文本的特点对目标错误信息文本进行预处理,减少了干扰信息,缩短了计算时间;然后,结合关键词集合、TF-IDF和向量空间模型(VSM)计算文本特征向量,其中关键词集合避免了多次对数据库中错误信息文本进行TF-IDF权值计算,提高了计算效率;接着,利用余弦相似计算目标错误信息文本与数据库文本之间的相似度,并对相似度排序,从而找到相似度最高的错误信息,进而找到相关联的变更请求(CR);最后,自动关联CR。实验结果表明,该方法在软件测试错误信息分析方面能够有效提高时间效率。 展开更多
关键词 向量空间模型 tf-idf 文本相似度量 余弦相似 软件测试
在线阅读 下载PDF
基于文本挖掘的民航飞行风险评价指标研究
11
作者 汪磊 安佳宁 史少铭 《安全与环境学报》 北大核心 2025年第3期825-834,共10页
为定量评价民航飞行风险,研究提出一种基于文本挖掘的民航飞行风险评价指标识别方法。该方法聚焦于冲偏出跑道、可控飞行撞地、空中失控3类典型核心风险事件,收集全球运输航空2008-2023年相关事故调查报告共210篇。利用词频与逆文档频... 为定量评价民航飞行风险,研究提出一种基于文本挖掘的民航飞行风险评价指标识别方法。该方法聚焦于冲偏出跑道、可控飞行撞地、空中失控3类典型核心风险事件,收集全球运输航空2008-2023年相关事故调查报告共210篇。利用词频与逆文档频率算法(Term Frequency-Inverse Document Frequency,TF-IDF)和潜在狄利克雷分布主题模型(Latent Dirichlet Allocation,LDA)提取语料中主题及关键词,参考航空公司飞行品质监控标准文件,归纳3类核心风险评价指标,并结合相关文献规范,构建民航飞行风险评价指标体系。采集某航空公司B737-800机型60条航班数据,对评价指标体系的合理性开展实例验证。结果显示:该方法能够客观高效地识别飞行风险指标,实现了对5名飞行员个体风险的量化排序。研究结果可应用于飞行风险评价,为后续建立风险量化模型奠定基础。 展开更多
关键词 安全工程 风险评价 文本挖掘 词频与逆文档频率 潜在迪利克雷分布
在线阅读 下载PDF
基于改进的TF-IDF算法及共现词的主题词抽取算法 被引量:19
12
作者 公冶小燕 林培光 +2 位作者 任威隆 张晨 张春云 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期1072-1080,共9页
信息主题的抽取是快速定位用户需求的基础任务,主题词抽取时主要存在三个问题:一是词语权重的计算,二是词语间关系的度量,三是数据维度灾难.在计算词权重时首先利用互信息确定共现词对,与词频、词性、词位置信息非线性组合,然后,根据词... 信息主题的抽取是快速定位用户需求的基础任务,主题词抽取时主要存在三个问题:一是词语权重的计算,二是词语间关系的度量,三是数据维度灾难.在计算词权重时首先利用互信息确定共现词对,与词频、词性、词位置信息非线性组合,然后,根据词权重构建文档—共现词矩阵并建立潜在语义分析(Latent Semantic Analysis,LSA)模型.该方法借助LSA模型的奇异值分解(Singular Value Decomposition,SVD)将文档—共现词矩阵映射到潜在语义空间,不仅实现数据降维,而且获得低维度的文档相似矩阵.最后,对文档相似矩阵进行k-means聚类,在同类文档中选出词权重最大的前几对共现词,作为该类文章的主题词.对比基于TF-IDF(Term Frequency-Inverse Document Frequency)和共现词抽取主题词的实验,该算法的准确度分别提高了19%和10%. 展开更多
关键词 共现词 互信息 语义分析(LSA) 奇异值分解(SVD) term frequency-inverse document frequency(tf-idf)
在线阅读 下载PDF
文本分类TF-IDF算法的改进研究 被引量:121
13
作者 叶雪梅 毛雪岷 +1 位作者 夏锦春 王波 《计算机工程与应用》 CSCD 北大核心 2019年第2期104-109,161,共7页
中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分... 中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分类结果的影响,提出基于网络新词改进文本分类TF-IDF算法。在文本预处理中识别新词,并在向量空间模型表示中改变特征权重计算公式。实验结果表明把新词发现加入文本预处理,可以达到特征降维的目的,并且改进后的特征权重算法能优化文本分类的结果。 展开更多
关键词 新词 词频-逆文档频率(tf-idf) 向量空间模型 文本分类
在线阅读 下载PDF
一种基于改进TF-IDF的SLAM回环检测算法 被引量:15
14
作者 董蕊芳 柳长安 杨国田 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第2期251-258,共8页
提出了一种基于改进TF-IDF的视觉SLAM回环检测算法,用于检测曾经访问过的位置,来消除定位过程中的累积误差.首先,针对在人造建筑场景中使用SLAM算法对图像点特征进行计算容易导致检测失败的问题,采用图像中的直线作为特征来进行回环检... 提出了一种基于改进TF-IDF的视觉SLAM回环检测算法,用于检测曾经访问过的位置,来消除定位过程中的累积误差.首先,针对在人造建筑场景中使用SLAM算法对图像点特征进行计算容易导致检测失败的问题,采用图像中的直线作为特征来进行回环检测的计算.其次,在LBD(line band descriptor)图像线特征描述子的基础上进一步提取了二进制LBD描述子来进行视觉词典的构建,保证了线特征的处理效率.提出了一种改进的TF-IDF(term frequency&inverse document frequency)单词权重确定方法,提高了视觉单词评分之间的区分度.最后,以室内建筑环境和输电线路场景为例进行实验,结果显示,所提出的基于线特征的回环检测算法比基于点特征的算法有较高的检测准确率,有助于提高SLAM算法的计算性能. 展开更多
关键词 SLAM 回环检测 人造建筑场景 二进制LBD 改进的tf-idf方法
在线阅读 下载PDF
结合TF-IDF的歌曲情感多标记分类 被引量:4
15
作者 孙向琨 邓伟 《计算机工程》 CAS CSCD 北大核心 2011年第19期189-190,197,共3页
提出一种结合词频-逆向文件频率(TF-IDF)规则与多标记分类的歌曲情感分析方法。对歌曲中基于声学特征的音乐内容,用带向量夹角的多标记k近邻算法进行分类,将TF-IDF规则用于歌词内容,以计算歌词情感分数,并将其作为情感特征。采用该方法... 提出一种结合词频-逆向文件频率(TF-IDF)规则与多标记分类的歌曲情感分析方法。对歌曲中基于声学特征的音乐内容,用带向量夹角的多标记k近邻算法进行分类,将TF-IDF规则用于歌词内容,以计算歌词情感分数,并将其作为情感特征。采用该方法对歌词内容分类错误的类别标记进行修正。选用396首英文歌曲对该算法进行测试,结果表明,与其他方法相比,该方法能使分类精确度从69%提高到74%。 展开更多
关键词 多标记分类 歌曲情感分类 多标记k近邻算法 词频-逆向文件频率
在线阅读 下载PDF
一种改进型TF-IDF文本聚类方法 被引量:20
16
作者 张蕾 姜宇 孙莉 《吉林大学学报(理学版)》 CAS 北大核心 2021年第5期1199-1204,共6页
针对传统词频-逆文档频率(TF-IDF)算法对具有特定属性的文本分类存在的不足,尤其是词汇在特定分类中具有特殊意义情形下准确率较低的问题,提出一种改进的TF-IDF文本聚类算法.采用2015—2019年吉林省科研机构发表论文数据进行对比实验,... 针对传统词频-逆文档频率(TF-IDF)算法对具有特定属性的文本分类存在的不足,尤其是词汇在特定分类中具有特殊意义情形下准确率较低的问题,提出一种改进的TF-IDF文本聚类算法.采用2015—2019年吉林省科研机构发表论文数据进行对比实验,分别用改进TF-IDF算法和传统TF-IDF算法先统计论文中的关键词词频,再通过K-means++算法进行聚类,最后使用随机森林算法分别评估聚类的准确性.实验结果表明,改进TF-IDF算法提高了分类的准确率. 展开更多
关键词 词频-逆文档频率(tf-idf) 混合聚类 交叉学科 基本科学指标数据库(ESI)文献
在线阅读 下载PDF
基于改进TF-IDF和ABLCNN的中文文本分类模型 被引量:32
17
作者 景丽 何婷婷 《计算机科学》 CSCD 北大核心 2021年第S02期170-175,190,共7页
文本分类是自然语言处理领域中的重要内容,常用于信息检索、情感分析等领域。针对传统的文本分类模型文本特征提取不全面、文本语义表达弱的问题,提出一种基于改进TF-IDF算法、带有注意力机制的长短期记忆卷积网络(Attention base on Bi... 文本分类是自然语言处理领域中的重要内容,常用于信息检索、情感分析等领域。针对传统的文本分类模型文本特征提取不全面、文本语义表达弱的问题,提出一种基于改进TF-IDF算法、带有注意力机制的长短期记忆卷积网络(Attention base on Bi-LSTM and CNN,ABLCNN)相结合的文本分类模型。该模型首先利用特征项在类内、类间的分布关系和位置信息改进TF-IDF算法,突出特征项的重要性,并结合Word2vec工具训练的词向量对文本进行表示;然后使用ABLCNN提取文本特征,ABLCNN结合了注意力机制、长短期记忆网络和卷积神经网络的优点,既可以有重点地提取文本的上下文语义特征,又兼顾了局部语义特征;最后,将特征向量通过softmax函数进行文本分类。在THUCNews数据集和online_shopping_10_cats数据集上对基于改进TF-IDF和ABLCNN的文本分类模型进行实验,结果表明,所提模型在两个数据集上的准确率分别为97.38%和91.33%,高于其他文本分类模型。 展开更多
关键词 文本分类 tf-idf 卷积神经网络 注意力机制 长短期记忆网络
在线阅读 下载PDF
基于MFCC-IMFCC混合倒谱的托辊轴承故障诊断 被引量:9
18
作者 陶瀚宇 陈换过 +2 位作者 彭程程 高祥冲 杨磊 《机电工程》 CAS 北大核心 2024年第7期1215-1222,共8页
针对梅尔倒谱系数(MFCC)对托辊轴承高频特征提取能力不足的问题,提出了一种基于梅尔倒谱系数和翻转梅尔倒谱系数(MFCC-IMFCC)的混合倒谱以及长短时记忆(LSTM)网络的托辊轴承故障诊断方法。首先,分析了三种状态下的托辊声音信号,明确了... 针对梅尔倒谱系数(MFCC)对托辊轴承高频特征提取能力不足的问题,提出了一种基于梅尔倒谱系数和翻转梅尔倒谱系数(MFCC-IMFCC)的混合倒谱以及长短时记忆(LSTM)网络的托辊轴承故障诊断方法。首先,分析了三种状态下的托辊声音信号,明确了托辊轴承故障信息主要分布在中高频区域;然后,为有效保留高频信息,提取了MFCC-IMFCC,以帧级串联的方式组成了混合倒谱特征;最后,将混合倒谱特征输入到双层LSTM模型中进行了训练,建立了托辊轴承故障诊断模型。研究结果表明:针对托辊正常、滚动体故障和偏心旋转故障三种状态,LSTM结合混合倒谱特征的平均识别准确率达到96.72%,相比于单一的MFCC和IMFCC特征,准确率分别提升3.94%和7.41%,凸显了混合倒谱特征在表征托辊轴承故障信息方面的显著优势。 展开更多
关键词 托辊轴承 轴承故障声音信号 高频信息 梅尔倒谱系数 翻转梅尔倒谱系数 混合倒谱系数 长短时记忆网络
在线阅读 下载PDF
社会网络环境下双驱动DEMATEL的群智知识融合应急决策方法 被引量:6
19
作者 陈兆芳 黄鹏城 黄文翰 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2336-2347,共12页
针对多属性应急群决策中决策属性缺少数据支持和公众难以参与决策过程的问题,提出了一种使用信任网络计算专家权重和融合公众知识与专家知识的双驱动模型的应急决策方法。首先,考虑传统模型只能依赖主观经验的不足,通过分析社交媒体中... 针对多属性应急群决策中决策属性缺少数据支持和公众难以参与决策过程的问题,提出了一种使用信任网络计算专家权重和融合公众知识与专家知识的双驱动模型的应急决策方法。首先,考虑传统模型只能依赖主观经验的不足,通过分析社交媒体中的文本数据来获得公众意见,并使用词频-逆文档频率算法(Term Frequency-Inverse Document Frequency, TF-IDF)提取意见中的关键信息,以公众大数据来获得数据驱动因素,同时,通过决策专家提供的专家知识,为决策过程提供知识驱动因素,构成双驱动的决策实验室分析法(Decision Making Trial and Evaluation Laboratory, DEMATEL)模型来建立评价属性体系,模型中影响因素的相互作用程度由公众大数据与专家评价共同决定,以得到公众知识数据与专家知识评价融合的结果;其次,使用社会网络表示专家之间的信任关系与信任强度,并通过Louvain算法对专家进行聚类,通过社会网络中节点的度中心性与接近中心性,得到个体的权重进而计算出各聚类权重,使用直觉模糊加权平均算子(Iterative Fuzzy Weighted Averaging, IFWA)结合决策偏好与属性权重,通过得分函数计算备选方案的得分,并依据得分结果对方案排序以得到最优的解决方案;最后,结合“7·20”郑州市突发暴雨案例证明了本方法的可行性和有效性。 展开更多
关键词 公共安全 决策实验室分析法(DEMATEL) 应急决策 词频-逆文档频率算法(tf-idf) 群智融合
在线阅读 下载PDF
语义识别驱动的化工泄漏事故事前预防研究 被引量:4
20
作者 刘勤明 董宏霖 孔得朝 《安全与环境学报》 CAS CSCD 北大核心 2024年第12期4734-4742,共9页
化工泄漏事故报告蕴含事故信息量大,但利用度低,仅依赖传统的事故分析理论和方法对事故后果进行分析统计难以实现事前预防、控制损失最小化的目的,因此,构建了语义识别驱动的化工泄漏事故事前预防研究框架,基于潜在狄利克雷分配(Latent ... 化工泄漏事故报告蕴含事故信息量大,但利用度低,仅依赖传统的事故分析理论和方法对事故后果进行分析统计难以实现事前预防、控制损失最小化的目的,因此,构建了语义识别驱动的化工泄漏事故事前预防研究框架,基于潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)主题模型提取化工泄漏事故致因主题及关键词,利用关键词共现网络分析进行致因中心性和关联度分析,使用因子分析进行致因影响因子的计算,实现了对化工泄漏事故报告潜在信息的挖掘和有效分析。结果表明:通过LDA模型可以计算得到化工泄漏事故致因主题,得出安全意识缺失、物料逸出、设备故障等5个聚类;基于改进点互信息(Pointwise Mutual Information,PMI)的关键词共现网络可以得到事故的关键致因、环节、场所和事故类型,其中最重要且关联度较高的致因是人员操作不当和现场管理不力;最后,通过因子分析得到影响后果最严重的致因是危险作业环境,其次是违规操作或操作不当。提出的研究框架在更深入挖掘利用海量事故致因信息的同时,减少了事故致因评价指标的主观性,为结构复杂、非单一标准的事故报告文本信息提取提供了新的思路,同时将语义识别拓展到化工泄漏事故预防领域,有助于化工泄漏事故的风险识别、预测与防控。 展开更多
关键词 安全社会工程 化工事故 文本挖掘 语义识别 词频逆文档频率算法 潜在狄利克雷分配主题模型
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部