In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of po...In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD airplasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.展开更多
Poly (ethylene terephthalate)(dacron, PET) films were exposed under argon plasma glow discharge with different glows and induced polymerization of acrylic acid(AA) in order to in- troduce carboxylic acid group o...Poly (ethylene terephthalate)(dacron, PET) films were exposed under argon plasma glow discharge with different glows and induced polymerization of acrylic acid(AA) in order to in- troduce carboxylic acid group onto PET (PET-AA) assisted by ultraviolet radiation(UV). Hirudin- immobilized PET (PET-HRD) films were prepared by the grafting of PET-AA, followed by chem- ical reaction with hirudin. The surface structure of the treated PET was determined by X-ray photoelectron spectroscopy (XPS). The wettability, surface free energy, and interface free energy of the films were investigated by contact angle measurement. The blood compatibility of the films was assessed by platelet-adhesion test and fibrinogen conformational change measurements to eval- uate the viability of the materials in biomedical engineering. Measurement by scanning electron microscopy (SEM) revealed that the amounts of adhered, aggregated and morphologically changed platelets were reduced on the hirudin-immobilized PET films. Enzyme-linked-immunoassay mea- surements that disclosed fibrinogen conformational changes showed results consistent with the platelets' behavior.展开更多
Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (...Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the展开更多
Several metal terephthalates were synthesized by hydrothermal solvent method. Firstly, the coordination type of metal ions and carboxylates in terephthalate was studied by FTIR spectroscopy. The results showed that th...Several metal terephthalates were synthesized by hydrothermal solvent method. Firstly, the coordination type of metal ions and carboxylates in terephthalate was studied by FTIR spectroscopy. The results showed that the binding type of zinc terephthalate and aluminum terephthalate are mainly bridged coordination, while the chelating coordination mode dominated in the magnesium terephthalate and cerium terephthalate. Secondly, the thermal decomposition mechanism of zinc terephthalate in nitrogen atmosphere was studied by TG and Py-GC/MS techniques. Finally, the activation energy of the thermal decomposition process was obtained by the Friedman method and the Flynn-Wall-Ozawa(FWO) method, and the most probabilistic function was obtained by multiple linear fitting. The results showed that the decomposition process of zinc terephthalate was an one-step reaction and the activation energy was equal to 187.38 kJ/mol.展开更多
The aging effects of the contact angle and surface energy on polyethylene terephthalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact ang...The aging effects of the contact angle and surface energy on polyethylene terephthalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and surface energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.展开更多
Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and th...Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and there has been a rapid development and commercialization of plasma technology over the past decade.In this work,the synergistic effect of atmospheric pressure plasma on alkaline etching and deep coloring of dyeing properties on polyethylene terephthalate(PET)fabrics and films was investigated.The topographical changes of the PET surface were investigated by atomic force microscopy(AFM)images,which revealed a smooth surface morphology of the untreated sample whereas a high surface roughness for the plasma and/or alkaline treated samples.The effects of atmospheric pressure plasma on alkaline etching of the structure and properties of PET were investigated by means of differential scanning calorimetry(DSC),the main objective of performing DSC was to investigate the effect of the plasma pre-treatment on the T_g and T_m.Using a tensile strength tester YG065 H and following a standard procedure the maximum force and elongation at maximum force of PET materials was investigated.Oxygen and argon plasma pre-treatment was found to increase the PET fabric weight loss rate.The color strength of PET fabrics was increased by various plasma pre-treatment times.The penetration of plasma and alkaline reactive species deep into the PET structure results in better dyeability and leaves a significant effect on the K/S values of the plasma pre-treated PET.It indicated that plasma pre-treatment has a great synergistic effect with the alkaline treatment of PET.展开更多
基金supported by National Natural Science Foundation of China (No.50833003)
文摘In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD airplasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.
文摘Poly (ethylene terephthalate)(dacron, PET) films were exposed under argon plasma glow discharge with different glows and induced polymerization of acrylic acid(AA) in order to in- troduce carboxylic acid group onto PET (PET-AA) assisted by ultraviolet radiation(UV). Hirudin- immobilized PET (PET-HRD) films were prepared by the grafting of PET-AA, followed by chem- ical reaction with hirudin. The surface structure of the treated PET was determined by X-ray photoelectron spectroscopy (XPS). The wettability, surface free energy, and interface free energy of the films were investigated by contact angle measurement. The blood compatibility of the films was assessed by platelet-adhesion test and fibrinogen conformational change measurements to eval- uate the viability of the materials in biomedical engineering. Measurement by scanning electron microscopy (SEM) revealed that the amounts of adhered, aggregated and morphologically changed platelets were reduced on the hirudin-immobilized PET films. Enzyme-linked-immunoassay mea- surements that disclosed fibrinogen conformational changes showed results consistent with the platelets' behavior.
文摘Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the
文摘Several metal terephthalates were synthesized by hydrothermal solvent method. Firstly, the coordination type of metal ions and carboxylates in terephthalate was studied by FTIR spectroscopy. The results showed that the binding type of zinc terephthalate and aluminum terephthalate are mainly bridged coordination, while the chelating coordination mode dominated in the magnesium terephthalate and cerium terephthalate. Secondly, the thermal decomposition mechanism of zinc terephthalate in nitrogen atmosphere was studied by TG and Py-GC/MS techniques. Finally, the activation energy of the thermal decomposition process was obtained by the Friedman method and the Flynn-Wall-Ozawa(FWO) method, and the most probabilistic function was obtained by multiple linear fitting. The results showed that the decomposition process of zinc terephthalate was an one-step reaction and the activation energy was equal to 187.38 kJ/mol.
文摘The aging effects of the contact angle and surface energy on polyethylene terephthalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and surface energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.
基金partially supported by the National Natural Science Foundation of China Contract 11375042
文摘Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and there has been a rapid development and commercialization of plasma technology over the past decade.In this work,the synergistic effect of atmospheric pressure plasma on alkaline etching and deep coloring of dyeing properties on polyethylene terephthalate(PET)fabrics and films was investigated.The topographical changes of the PET surface were investigated by atomic force microscopy(AFM)images,which revealed a smooth surface morphology of the untreated sample whereas a high surface roughness for the plasma and/or alkaline treated samples.The effects of atmospheric pressure plasma on alkaline etching of the structure and properties of PET were investigated by means of differential scanning calorimetry(DSC),the main objective of performing DSC was to investigate the effect of the plasma pre-treatment on the T_g and T_m.Using a tensile strength tester YG065 H and following a standard procedure the maximum force and elongation at maximum force of PET materials was investigated.Oxygen and argon plasma pre-treatment was found to increase the PET fabric weight loss rate.The color strength of PET fabrics was increased by various plasma pre-treatment times.The penetration of plasma and alkaline reactive species deep into the PET structure results in better dyeability and leaves a significant effect on the K/S values of the plasma pre-treated PET.It indicated that plasma pre-treatment has a great synergistic effect with the alkaline treatment of PET.