Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and co...Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.展开更多
A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the convent...A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double- split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444OHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339800)the National Natural Science Foundation of China(Grant Nos.11374358 and 61077082)
文摘Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2011AA010204the National Natural Science Foundation of China under Grant No 91438118
文摘A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double- split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444OHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators.