Metasurfaces incorporating graphene hold great promise for the active manipulation of terahertz waves. However,it remains challenging to design a broadband graphene-based terahertz metasurface with switchable function...Metasurfaces incorporating graphene hold great promise for the active manipulation of terahertz waves. However,it remains challenging to design a broadband graphene-based terahertz metasurface with switchable functionality of half-wave plate(HWP) and quarter-wave plate(QWP). Here, we propose a graphene–metal hybrid metasurface for achieving broadband switchable HWP/QWP in the terahertz regime. Simulation results show that, by varying the Fermi energy of graphene from 0 eV to 1 eV, the function of the reflective metasurface can be switched from an HWP with polarization conversion ratio exceeding 97% over a wide band ranging from 0.7 THz to 1.3 THz, to a QWP with ellipticity above 0.92over 0.78 THz–1.33 THz. The sharing bandwidth reaches up to 0.52 THz and the relative bandwidth is as high as 50%.We expect this broadband and dynamically switchable terahertz HWP/QWP will find applications in terahertz sensing,imaging, and telecommunications.展开更多
基金supported by Shenzhen Research Foundation (Grant No. JCYJ20180507182444250)。
文摘Metasurfaces incorporating graphene hold great promise for the active manipulation of terahertz waves. However,it remains challenging to design a broadband graphene-based terahertz metasurface with switchable functionality of half-wave plate(HWP) and quarter-wave plate(QWP). Here, we propose a graphene–metal hybrid metasurface for achieving broadband switchable HWP/QWP in the terahertz regime. Simulation results show that, by varying the Fermi energy of graphene from 0 eV to 1 eV, the function of the reflective metasurface can be switched from an HWP with polarization conversion ratio exceeding 97% over a wide band ranging from 0.7 THz to 1.3 THz, to a QWP with ellipticity above 0.92over 0.78 THz–1.33 THz. The sharing bandwidth reaches up to 0.52 THz and the relative bandwidth is as high as 50%.We expect this broadband and dynamically switchable terahertz HWP/QWP will find applications in terahertz sensing,imaging, and telecommunications.