Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ...In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.展开更多
考虑速度分量的各向异性进行能量估计,得到三维稳态Q-tensor液晶流系统的Liouville型定理,即若u∈L^(q)(R^(3))∩˙H^(1)(R^(3)),u_(i)∈L xi q/q−2 L s xei(R×R^(2))(i=1,2,3),且Q∈H^(2)(R^(3)),其中2/q+1/s≥1/2,1≤s≤∞,2<...考虑速度分量的各向异性进行能量估计,得到三维稳态Q-tensor液晶流系统的Liouville型定理,即若u∈L^(q)(R^(3))∩˙H^(1)(R^(3)),u_(i)∈L xi q/q−2 L s xei(R×R^(2))(i=1,2,3),且Q∈H^(2)(R^(3)),其中2/q+1/s≥1/2,1≤s≤∞,2<q<∞,则该稳态系统只有平凡解.这个结论推广了已有的结果.展开更多
In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detectio...In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.展开更多
Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint s...Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets.A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed,providing an analytical solution for the equivalent elastic compliance tensor of rock mass.A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets,based on conditions set by the basic hypothesis.The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.展开更多
Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order princip...Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.展开更多
Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tens...Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tensor, field differentiation is generally approximated by field difference. As a result, magnetic objects positioning by magnetic field gradient tensor measurement always involves an inherent error caused by sensor sizes, leading to a reduction in detectable distance and detectable angle. In this paper, the inherent positioning error caused by magnetic field gradient tensor measurement is calculated and corrected by iterations based on the systematic position error distribution patterns. The results show that, the detectable distance range and the angle range of an ac magnetic object(2.44 Am^2@1 kHz) can be increased from(0.45 m, 0.75 m),(0?, 25?) to(0.30 m, 0.80 m),(0?,80?), respectively.展开更多
Dongjiahe Coal Mine belongs to the Carboniferous Permian coal field which has a high degree of karst and fissure development.This paper takes the working face of Dongjiahe Coal Mine as an example;through the microseis...Dongjiahe Coal Mine belongs to the Carboniferous Permian coal field which has a high degree of karst and fissure development.This paper takes the working face of Dongjiahe Coal Mine as an example;through the microseismic(MS)monitoring system arranged on the working face,the moment tensor theory was used to invert the focal mechanism solution of the anomalous area of the floor MS event;combining the numerical simulation and field data,the underlying floor faults were identified by the stress inversion method.The results show that:1)Moment tensors were decomposed into three components and the main type of rupture in this area is mixed failure according to the relative criterion;2)The hidden fault belongs to the reversed fault,its dip angle is approximately 70°,and the rupture length is 21 m determined by the inversion method of the initial dynamic polarity and stress in the focal mechanism;3)The failure process of the fault is divided into three stages by numerical simulation method combined with the temporal and spatial distribution of MS events.The results can provide a reference for early warning and evaluation of similar coal mine water inrush risks.展开更多
Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui...Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.展开更多
Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s...Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.展开更多
This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagn...This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.展开更多
The goal of this study is to determine earthquake source processes of moderate to strong earthquakes in Western China using data recorded by the digital broadband stations in and near China. There are 12 broadband sta...The goal of this study is to determine earthquake source processes of moderate to strong earthquakes in Western China using data recorded by the digital broadband stations in and near China. There are 12 broadband stations on the Chinese mainland. This paper used a kind of moment tensor inversion method to study the large earthquakes in the Xizang (Tibet) region of China.In this study, we first ported and tested a moment\|tensor inversion code and then applied the technique to a large (magnitude M s=7.9) earthquake in Xizang region of China. The inversion for the earthquake moment tensor is performed in the frequency domain by fitting long\|period observed spectra to synthetic spectra calculated. For details of the method refer to Giardini and Beranzoli (1992). As part of the project, we extended the library of synthetics by including local (>100km) and teleseismic distances (2000km<distance<9000km) which allows now the use of data from additional stations. The Xizang region is one of the most unusual and spectacular topographic features on Earth rising, on average, more than 4000 meters above sea level. The high topography is the result of the collision between the Indian and Asian tectonic plates which is also the cause for the area’s high seismicity rate. As a preliminary study, the moment tensors were obtained for the large earthquake ( M s=7.9) of 8 Nov 1997 in Xizang region using data from five stations. The result is similar to the Harvard CMT solution; for strike, dip and rake, this paper obtained 343, 76 and -177 degrees, respectively, while the Harvard CMT values are 348, 88 and 159. The moment magnitude estimate of Harvard is only 0.1 unit larger than my estimate of M w=7 4.. The fit in the frequency domain (phase and amplitude) suggests the reasonable result. At long periods the earthquake depth is generally not well resolved. Inversions for several trial depths, however, show a clear variance minimum for centroid depths (the average depth over the entire rupture plane) of a little less than about 12km. This is roughly consistent with the Harvard estimate of 16.4km. The fit result also shows that the fault plane solution is stable and well resolved. The test of the frequence band influence suggests that for each band the results are stable over a wide depth range. However, the results at one trial depth slightly depend on the frequency band. This research is being performed still, due to the important implication of Xizang region on geodynamics studies. Combining with more data, geological investigation and stress field analysis, we will give further results and discussion.展开更多
Existing pen and ink sketch technologies can be applied to general images, but they could not produce optimal output for images of traditional architecture, because most images consist of exquisite straight lined patt...Existing pen and ink sketch technologies can be applied to general images, but they could not produce optimal output for images of traditional architecture, because most images consist of exquisite straight lined patterns in traditional architecture, such as root tiles and window bars. The lines of roofs and eaves need to be described delicately to express pen and ink sketch most effectively. Therefore, by proposing a method to create white noise for light and shade of input images, to extract input vector directions from the white noise, and to determine the direction and length of stroke, a new expression technique is proposed for pen and ink sketch that could best reflect the characteristics of traditional architecture.展开更多
科学的轨道交通出行模式分析是运营决策优化的重要依据。为挖掘城市轨道交通时空流动特征及其影响机理,提出一种基于非负张量分解的OD客流强度时空分布计算方法,采用融合SHAP归因分析的极端梯度提升树(eXtreme Gradient Boosting,XGBoo...科学的轨道交通出行模式分析是运营决策优化的重要依据。为挖掘城市轨道交通时空流动特征及其影响机理,提出一种基于非负张量分解的OD客流强度时空分布计算方法,采用融合SHAP归因分析的极端梯度提升树(eXtreme Gradient Boosting,XGBoost)对各模式OD客流强度进行拟合预测。使用城市轨道交通AFC(automatic fare collection system,AFC)系统数据,从空间、时段以及出行日3个维度构建3阶客流OD张量,采用交替非负最小二乘法(alternating non negative least squares,ANLS)实现非负CP张量分解。基于张量分解结果,从北京轨道交通344个站点连续1周16266966条出行数据中,提取出晨高峰长距离通勤、早高峰中短通勤、平峰休闲中转出行、晚归出行4种出行模式的时、空分布特征。基于可解释性机器学习模型,对各模式OD客流进行预测。结果表明XGBoost与CatBoost、LightGBM、OLS相比更具优势。根据OD起终点站域环境特征,考虑起终点缓冲区内各类兴趣点(point of interest,POI)数量、小区住户数、房价、人口数量、站点偏离距离以及出行距离等指标,构建OD强度关联指标体系,解释各指标对OD客流强度的正负反馈效应。SHAP归因分析说明,居民更倾向于14站以内的中短途出行,并分别得到了就业类POI数目对晨、早通勤客流正向影响,以及餐饮类POI数目对休闲中转出行客流正向影响的临界阈值。该方法可为轨道交通精细化出行引导和客流组织提供数据支撑,优化城市轨道交通供需平衡及服务水平。展开更多
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金Supported by National Nature Science Foundation(12371381)Nature Science Foundation of Shanxi(202403021222270)。
文摘In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.
文摘考虑速度分量的各向异性进行能量估计,得到三维稳态Q-tensor液晶流系统的Liouville型定理,即若u∈L^(q)(R^(3))∩˙H^(1)(R^(3)),u_(i)∈L xi q/q−2 L s xei(R×R^(2))(i=1,2,3),且Q∈H^(2)(R^(3)),其中2/q+1/s≥1/2,1≤s≤∞,2<q<∞,则该稳态系统只有平凡解.这个结论推广了已有的结果.
文摘In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.
基金Projects(41172284,51379202) supported by the National Natural Science Foundation of ChinaProject(2013CB036405) supported by the National Basic Research Program of ChinaProject(2013BAB02B01) supported by the National Key Technologies R&D Program of China
文摘Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets.A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed,providing an analytical solution for the equivalent elastic compliance tensor of rock mass.A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets,based on conditions set by the basic hypothesis.The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.
基金supported by the National Natural Science Foundationof China(51275348)
文摘Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.
基金supported by the National Natural Science Foundation of China(61473023)
文摘Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tensor, field differentiation is generally approximated by field difference. As a result, magnetic objects positioning by magnetic field gradient tensor measurement always involves an inherent error caused by sensor sizes, leading to a reduction in detectable distance and detectable angle. In this paper, the inherent positioning error caused by magnetic field gradient tensor measurement is calculated and corrected by iterations based on the systematic position error distribution patterns. The results show that, the detectable distance range and the angle range of an ac magnetic object(2.44 Am^2@1 kHz) can be increased from(0.45 m, 0.75 m),(0?, 25?) to(0.30 m, 0.80 m),(0?,80?), respectively.
基金Project(2017YFC1503103)supported by the National Key Research and Development Plan of ChinaProjects(51774064,51974055,41941018)supported by the National Natural Science Foundation of China+1 种基金Project(DUT20GJ216)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51627804)supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development,China。
文摘Dongjiahe Coal Mine belongs to the Carboniferous Permian coal field which has a high degree of karst and fissure development.This paper takes the working face of Dongjiahe Coal Mine as an example;through the microseismic(MS)monitoring system arranged on the working face,the moment tensor theory was used to invert the focal mechanism solution of the anomalous area of the floor MS event;combining the numerical simulation and field data,the underlying floor faults were identified by the stress inversion method.The results show that:1)Moment tensors were decomposed into three components and the main type of rupture in this area is mixed failure according to the relative criterion;2)The hidden fault belongs to the reversed fault,its dip angle is approximately 70°,and the rupture length is 21 m determined by the inversion method of the initial dynamic polarity and stress in the focal mechanism;3)The failure process of the fault is divided into three stages by numerical simulation method combined with the temporal and spatial distribution of MS events.The results can provide a reference for early warning and evaluation of similar coal mine water inrush risks.
基金Projects(41174061,41374120)supported by the National Natural Science Foundation of China
文摘Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.
基金Project(11JJ3080)supported by Natural Science Foundation of Hunan Province,ChinaProject(11CY012)supported by Cultivation in Hunan Colleges and Universities,ChinaProject(ET51007)supported by Youth Talent in Hunan University,China
文摘Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.
基金supported by the National Natural Science Foundation of China(1140503561004130+4 种基金60834005)the Natural Science Foundation of Heilongjiang Province of China(F201414)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBHQ15034)the Stable Supporting Fund of Acoustic Science and Technology Laboratory(JCKYS2019604SSJS002)the Fundamental Research Funds for the Central Universities。
文摘This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.
文摘The goal of this study is to determine earthquake source processes of moderate to strong earthquakes in Western China using data recorded by the digital broadband stations in and near China. There are 12 broadband stations on the Chinese mainland. This paper used a kind of moment tensor inversion method to study the large earthquakes in the Xizang (Tibet) region of China.In this study, we first ported and tested a moment\|tensor inversion code and then applied the technique to a large (magnitude M s=7.9) earthquake in Xizang region of China. The inversion for the earthquake moment tensor is performed in the frequency domain by fitting long\|period observed spectra to synthetic spectra calculated. For details of the method refer to Giardini and Beranzoli (1992). As part of the project, we extended the library of synthetics by including local (>100km) and teleseismic distances (2000km<distance<9000km) which allows now the use of data from additional stations. The Xizang region is one of the most unusual and spectacular topographic features on Earth rising, on average, more than 4000 meters above sea level. The high topography is the result of the collision between the Indian and Asian tectonic plates which is also the cause for the area’s high seismicity rate. As a preliminary study, the moment tensors were obtained for the large earthquake ( M s=7.9) of 8 Nov 1997 in Xizang region using data from five stations. The result is similar to the Harvard CMT solution; for strike, dip and rake, this paper obtained 343, 76 and -177 degrees, respectively, while the Harvard CMT values are 348, 88 and 159. The moment magnitude estimate of Harvard is only 0.1 unit larger than my estimate of M w=7 4.. The fit in the frequency domain (phase and amplitude) suggests the reasonable result. At long periods the earthquake depth is generally not well resolved. Inversions for several trial depths, however, show a clear variance minimum for centroid depths (the average depth over the entire rupture plane) of a little less than about 12km. This is roughly consistent with the Harvard estimate of 16.4km. The fit result also shows that the fault plane solution is stable and well resolved. The test of the frequence band influence suggests that for each band the results are stable over a wide depth range. However, the results at one trial depth slightly depend on the frequency band. This research is being performed still, due to the important implication of Xizang region on geodynamics studies. Combining with more data, geological investigation and stress field analysis, we will give further results and discussion.
基金Project(2010-0021154)supported by National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology through the Basic Science Research ProgramProject(2012H1B8A2025982)supported by Human Resource Training Project for Regional Innovation,Korea
文摘Existing pen and ink sketch technologies can be applied to general images, but they could not produce optimal output for images of traditional architecture, because most images consist of exquisite straight lined patterns in traditional architecture, such as root tiles and window bars. The lines of roofs and eaves need to be described delicately to express pen and ink sketch most effectively. Therefore, by proposing a method to create white noise for light and shade of input images, to extract input vector directions from the white noise, and to determine the direction and length of stroke, a new expression technique is proposed for pen and ink sketch that could best reflect the characteristics of traditional architecture.
基金Supported by National Basic Research Development Program of China(973 Program)(2007CB311006) National Natural Science Foundation of China(60602026),Acknowledgement The authors would like to thank ESA (http://earth.esa. int/polsarpro/datasets.html) for providing the data.
文摘科学的轨道交通出行模式分析是运营决策优化的重要依据。为挖掘城市轨道交通时空流动特征及其影响机理,提出一种基于非负张量分解的OD客流强度时空分布计算方法,采用融合SHAP归因分析的极端梯度提升树(eXtreme Gradient Boosting,XGBoost)对各模式OD客流强度进行拟合预测。使用城市轨道交通AFC(automatic fare collection system,AFC)系统数据,从空间、时段以及出行日3个维度构建3阶客流OD张量,采用交替非负最小二乘法(alternating non negative least squares,ANLS)实现非负CP张量分解。基于张量分解结果,从北京轨道交通344个站点连续1周16266966条出行数据中,提取出晨高峰长距离通勤、早高峰中短通勤、平峰休闲中转出行、晚归出行4种出行模式的时、空分布特征。基于可解释性机器学习模型,对各模式OD客流进行预测。结果表明XGBoost与CatBoost、LightGBM、OLS相比更具优势。根据OD起终点站域环境特征,考虑起终点缓冲区内各类兴趣点(point of interest,POI)数量、小区住户数、房价、人口数量、站点偏离距离以及出行距离等指标,构建OD强度关联指标体系,解释各指标对OD客流强度的正负反馈效应。SHAP归因分析说明,居民更倾向于14站以内的中短途出行,并分别得到了就业类POI数目对晨、早通勤客流正向影响,以及餐饮类POI数目对休闲中转出行客流正向影响的临界阈值。该方法可为轨道交通精细化出行引导和客流组织提供数据支撑,优化城市轨道交通供需平衡及服务水平。