期刊文献+
共找到1,512篇文章
< 1 2 76 >
每页显示 20 50 100
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
1
作者 Yu Jinxia Cai Zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
在线阅读 下载PDF
Method of neural network modulation recognition based on clustering and Polak-Ribiere algorithm 被引量:4
2
作者 Faquan Yang Zan Li +2 位作者 Hongyan Li Haiyan Huang Zhongxian Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期742-747,共6页
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ... To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm feature extraction algorithm of Polak-Ribiere neural network (NN) modulation recognition.
在线阅读 下载PDF
Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images
3
作者 FENG Hao WU Jianzhong +1 位作者 ZHANG Lu LIAO Mingsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期896-906,共11页
Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing st... Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection. 展开更多
关键词 change detection multi-temporal synthetic aperture radar(SAR)data coherent and incoherent features clustering
在线阅读 下载PDF
基于Word2vec-LSTM与聚类修正的海上风电出力预测方法 被引量:1
4
作者 潘国兵 余方吉 +1 位作者 陈坚 欧阳静 《高技术通讯》 北大核心 2025年第1期102-112,共11页
针对目前海上风电出力预测方法精度较低的问题,提出一种基于词向量化和长短期记忆网络(word to vector long short-term memory,Word2vec-LSTM)与聚类修正的海上风电出力预测方法。对Word2vec方法进行改进来提取时间序列数据特征,实现... 针对目前海上风电出力预测方法精度较低的问题,提出一种基于词向量化和长短期记忆网络(word to vector long short-term memory,Word2vec-LSTM)与聚类修正的海上风电出力预测方法。对Word2vec方法进行改进来提取时间序列数据特征,实现数据信息的高效利用;在长短期记忆神经网络的预测模型基础上,研究了一种基于k-shape聚类结果的预测结果修正算法,对预测结果距离聚类中心超过阈值的数值判定为预测误差偏大的数据并向簇中心进行修正。最后,基于江苏某海上风电场的真实数据进行测试,结果表明,基于Word2vec-LSTM与聚类修正的海上风电出力预测方法的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)达到5.04和5.42,相比传统LSTM预测模型的误差平均降低了11.10%和12.25%,为海上风电并网与电网调控提供了技术支持。 展开更多
关键词 海上风电 功率预测 特征提取 聚类修正
在线阅读 下载PDF
基于无参数聚类和改进支持向量机多特征融合的控制图模式识别 被引量:1
5
作者 潘柏松 邱敏鹏 钱丽娟 《计算机集成制造系统》 北大核心 2025年第3期855-868,共14页
为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计... 为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计特征以及形状特征进行融合,通过交叉实验获取最优特征组合。借助白鲸算法改进支持向量机分类器,实现对控制图异常模式的准确高效识别。通过仿真实验比较了不同分类器在不同数据集复杂程度下的识别准确性和效率,结果显示,所提出的分类模型对数据集复杂程度的影响较小,即使在复杂数据集上也能保持98.63%以上的识别精度,并具备训练速度快、计算复杂度低的优点。 展开更多
关键词 控制图 模式识别 特征融合 无参数聚类
在线阅读 下载PDF
基于深度图聚类和特征重构的风电集群功率短期预测方法 被引量:1
6
作者 杨茂 韩超 张薇 《电力自动化设备》 北大核心 2025年第4期53-59,共7页
针对当前短期风电集群功率预测方法难以充分提取时空特征实现高精度集群预测的问题,提出一种基于深度嵌入式图注意力聚类、改进自适应噪声完备集合经验模态分解和长短期时间序列网络的风电集群功率短期预测方法。基于地理位置信息构建... 针对当前短期风电集群功率预测方法难以充分提取时空特征实现高精度集群预测的问题,提出一种基于深度嵌入式图注意力聚类、改进自适应噪声完备集合经验模态分解和长短期时间序列网络的风电集群功率短期预测方法。基于地理位置信息构建图注意力网络,指导深度嵌入式图注意力聚类算法通过预报风速实现有效的集群划分,通过自适应噪声完备集合经验模态分解算法分别对每个类别的风电功率和风速进行分解;根据各分量的排列熵将分解后的风电功率序列和风速序列分别重构为随机分量、振荡分量和趋势分量;通过长短期时间序列网络模型得到预测结果。将所提方法应用于中国东北部某大规模风电集群,结果表明,所提预测方法的均方根误差、平均绝对误差和准确率分别为0.06376、0.05231和93.62%,优于对比方法,验证了所提方法的有效性。 展开更多
关键词 风电功率预测 图注意力网络 集群划分 深度学习 特征重构
在线阅读 下载PDF
融合局部和全局特征的深度多视图聚类网络
7
作者 李顺勇 李嘉茗 +1 位作者 曹付元 郑孟蛟 《计算机科学与探索》 北大核心 2025年第8期2085-2098,共14页
多视图聚类是当前数据分析领域的一个重要研究方向,旨在通过整合来自不同视角的数据,提升聚类精度。然而,传统的多视图聚类方法虽然在一定程度上提高了聚类效果,但往往忽略了视图间局部与全局特征的交互与融合。此外,尽管近年提出的多... 多视图聚类是当前数据分析领域的一个重要研究方向,旨在通过整合来自不同视角的数据,提升聚类精度。然而,传统的多视图聚类方法虽然在一定程度上提高了聚类效果,但往往忽略了视图间局部与全局特征的交互与融合。此外,尽管近年提出的多视图深度聚类方法,通过深度神经网络或对比学习增强了表征能力,但大多只关注局部或全局特征,未能在同一框架下对这两类特征进行综合处理。针对这些不足,提出了一种融合卷积神经网络与Transformer的深度多视图聚类模型(DMVCN-ILGF)。该模型设计了并行的卷积分支和Transformer分支,分别用于提取局部特征和全局特征。为了实现特征的有效融合,引入了特征交互机制(FIM)和特征融合模块(FFM),通过充分整合各视图的特征信息,以增强不同特征的交互和融合,最终提升聚类性能。进一步地,还设计了实例级和类别级对比损失,分别计算各视图的局部与全局特征之间的相似性,从而优化模型的表征能力和聚类效果。实验结果表明,提出的DMVCN-ILGF模型在多个多视图数据集上均取得了显著优于现有方法的聚类性能。 展开更多
关键词 多视图聚类 卷积神经网络 TRANSFORMER 特征融合
在线阅读 下载PDF
基于多层特征融合与增强的对比图聚类
8
作者 李志明 魏贺萍 +1 位作者 张广康 尤殿龙 《计算机应用研究》 北大核心 2025年第6期1749-1754,共6页
现有大多数对比图聚类算法存在以下问题:生成节点表示时忽略了浅层网络提取的底层特征和底层结构信息;未充分利用高阶邻居节点信息;未结合置信度信息与拓扑结构信息来构建正样本对。为解决以上问题,提出了基于多层特征融合与增强的对比... 现有大多数对比图聚类算法存在以下问题:生成节点表示时忽略了浅层网络提取的底层特征和底层结构信息;未充分利用高阶邻居节点信息;未结合置信度信息与拓扑结构信息来构建正样本对。为解决以上问题,提出了基于多层特征融合与增强的对比图聚类算法。该算法首先融合不同层次网络提取的节点特征,以补充节点的底层结构信息;其次,通过节点间的局部拓扑相关性和全局语义相似度聚合节点信息,以增强节点表示的上下文约束一致性;最后,联合置信度信息和拓扑结构信息构建更多高质量正样本对,提高簇内表示一致性。实验结果表明,CGCMFFE在四种广泛使用的聚类评价指标上表现出优异的性能。理论分析和实验研究验证了CGCMFFE中节点底层特征、高阶邻居节点信息、置信度和拓扑结构信息的关键作用,证明了CGCMFFE的优越性。 展开更多
关键词 多层特征融合 对比图聚类 无监督学习
在线阅读 下载PDF
基于改进SOM网络的聚类算法
9
作者 蒋锐 范姝文 +1 位作者 王小明 徐友云 《计算机科学》 北大核心 2025年第8期162-170,共9页
在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改... 在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改进的基于置信度SOM模型(Improved Confidence-based SOM Model,icSOM)。样本数据首先由K-means算法初步分类,为模型训练提供更多的数据信息;然后将预分类后的数据分别训练相互独立的SOM模型,以消除不同类之间的影响;最后在传统SOM模型基础上提出置信度矩阵概念,通过综合判断获胜神经元的置信度及其与输入数据间的欧氏距离最终得到置信神经元,根据置信神经元所属类别给数据分配聚类标签。在鸢尾花数据集(Iris)及葡萄酒数据集(Wine)上利用icSOM进行聚类分析,实验结果表明,所提算法可以更好地处理样本数据,取得了较好的聚类效果。 展开更多
关键词 机器学习 无监督学习 聚类 自组织特征映射神经网络
在线阅读 下载PDF
一种基于核数据变换方法的遥感图像谱聚类算法
10
作者 赵海军 陈华月 崔梦天 《林业工程学报》 北大核心 2025年第2期130-137,共8页
随着遥感图像在各行各业的日益广泛应用,遥感图像的处理变得愈来愈重要。为了实现谱聚类算法应用于林业工程中的遥感图像处理,本研究提出了一种基于核数据变换和角距离度量的谱聚类新算法。首先,通过对基于多变量核特征提取的一般核熵... 随着遥感图像在各行各业的日益广泛应用,遥感图像的处理变得愈来愈重要。为了实现谱聚类算法应用于林业工程中的遥感图像处理,本研究提出了一种基于核数据变换和角距离度量的谱聚类新算法。首先,通过对基于多变量核特征提取的一般核熵成分分析法的分析,并运用信息论概念和核密度估计密切相关的瑞利二次熵,提出了最佳特征提取和无监督降维方法,即最佳核熵成分分析法。它根据类或聚类信息方面的数据结构,采用一个额外的旋转,使得成分之间的独立性最大化;在这些成分中最佳地捕捉数据的高信息势部分,直接找到关于保留成分的数量的最大化信息势的基,以确保得到的解比标准的核熵成分分析得到的解保留更多(或相等)的信息势;并提出了采用梯度上升法来求解最佳核熵成分分析优化问题,具体实现是采用了一种简单的提前终止方案,以确保梯度达到一个额外迭代不会显著修改成本函数的区域。其次,通过对最佳核熵成分分析变换和样本外扩展的分析,构建了一种基于角距离度量的谱聚类算法,它采用角距离度量的核k-均值聚类目标,而不是采用基于欧氏距离的度量。优化过程采用最佳核熵成分分析空间中的角距离,以保证收敛到局部最优,从而实现图像的聚类。采用多光谱卫星图像的实验结果表明,本研究提出的谱聚类算法不仅适用于遥感图像的云筛选问题,而且相比目前其他先进的聚类算法有更好的分类性能。 展开更多
关键词 遥感图像 非线性特征提取 概率密度函数 K-均值 瑞利熵 谱聚类
在线阅读 下载PDF
基于相似度和密度的抗噪声船舶轨迹聚类方法
11
作者 杨家轩 吴长胜 赵时雨 《舰船科学技术》 北大核心 2025年第2期178-184,共7页
通过对船舶AIS数据聚类可以掌握船舶运动行为和特征规律,但在轨迹聚类中通过距离描述的相似性不能连续地表征轨迹之间的相似程度,且对轨迹中的噪声点敏感、无法区分轨迹方向。针对上述问题,本文提出一种基于相似度和密度的抗噪声轨迹聚... 通过对船舶AIS数据聚类可以掌握船舶运动行为和特征规律,但在轨迹聚类中通过距离描述的相似性不能连续地表征轨迹之间的相似程度,且对轨迹中的噪声点敏感、无法区分轨迹方向。针对上述问题,本文提出一种基于相似度和密度的抗噪声轨迹聚类方法,构建航向约束分段路径距离并定义轨迹相似度函数;根据轨迹相似度分布特征和聚类评价指标,建立自适应确定最佳聚类参数流程。以长江口水域AIS数据为例,基于确定的最佳参数聚类出8个不同方向的轨迹簇,结果与实际船舶习惯航路相符。实验结果表明,所提出的方法能够快速确定最佳聚类参数并对不同运动方向的轨迹进行聚类,结果可用于特征轨迹提取和航路识别,为智能航海提供技术支撑。 展开更多
关键词 船舶交通 轨迹聚类 相似度 轨迹密度 特征轨迹
在线阅读 下载PDF
基于特征优选与自适应三支密度峰值法的多元负荷聚类及用能行为刻画
12
作者 赵振宇 郭丽宣 《科学技术与工程》 北大核心 2025年第5期1944-1953,共10页
随着向新型能源体系的转型加速,亟待开展对多元负荷用户的复杂用能特性分析的深入研究。提出了一种综合考量电、冷、热多元负荷耦合特性的用户用能特性标签库构建技术及用户画像方法。首先运用快速相关性滤波算法剔除高冗余低相关特征,... 随着向新型能源体系的转型加速,亟待开展对多元负荷用户的复杂用能特性分析的深入研究。提出了一种综合考量电、冷、热多元负荷耦合特性的用户用能特性标签库构建技术及用户画像方法。首先运用快速相关性滤波算法剔除高冗余低相关特征,并通过随机森林和递归式特征消除算法精选出具有强区分能力的用能特征。在聚类阶段,改进的自适应三支密度峰值聚类算法(three-way adaptive density peak clustering,3W-ADPC)通过结合自适应近邻搜索和三支聚类算法提升负荷聚类效果。实证结果表明,所提方法具备在计算效率和聚类精度上的双重优势,能够精准揭示多元负荷用户综合用能特性和深层次信息,证实所提方法在多元负荷用户行为研究中的实用价值。 展开更多
关键词 负荷聚类 多元负荷 用能行为特性 特征优选 用户画像
在线阅读 下载PDF
基于GLDSC-ConvAutoformer模型的区域电动汽车短期充电负荷预测
13
作者 李练兵 郭兴辰 +1 位作者 曾四鸣 梁纪峰 《太阳能学报》 北大核心 2025年第2期90-98,共9页
针对大规模电动汽车并网过程中对电网负荷产生波动的问题,电动汽车短期负荷预测可为电动汽车的优化调度提供决策依据。为更好地保证电网的稳定性与可靠性,提出一种电动汽车短期充电负荷预测方法,以提高负荷预测精度。首先,根据每个充电... 针对大规模电动汽车并网过程中对电网负荷产生波动的问题,电动汽车短期负荷预测可为电动汽车的优化调度提供决策依据。为更好地保证电网的稳定性与可靠性,提出一种电动汽车短期充电负荷预测方法,以提高负荷预测精度。首先,根据每个充电桩上电动汽车充电的时空差异,构建基于受限动态时间弯曲距离算法的灰关联度模型,将关联度矩阵作为谱聚类算法的度矩阵,构建灰色受限动态谱聚类算法,对所有电动汽车日充电负荷曲线进行聚类,使聚类数据有更好的周期性;其次,对聚类数据分别进行双重卷积化处理,将提取的数据特征分别输入到Autoformer,构建ConvAutoformer负荷预测模型,分别对所聚类结果进行负荷预测;最后,采用实际电动汽车充电桩充电负荷数据进行算例分析。实验结果表明,所提方法能有效提高电动汽车短期充电负荷预测准确度。 展开更多
关键词 电动汽车 特征提取 预测 受限动态时间弯曲距离 灰色受限动态谱聚类 ConvAutoformer
在线阅读 下载PDF
基于多源传感器数据融合的断路器故障诊断方法 被引量:3
14
作者 张国宝 王朝廷 +3 位作者 黄伟民 杨为 袁欢 王小华 《高电压技术》 北大核心 2025年第2期660-668,共9页
为解决单源传感器故障诊断可识别故障种类少、诊断精度低的问题,该文利用电流与振动传感器数据,提出了一种基于前向搜索(sequential forward selection,SFS)的模糊C均值(fuzzy C-means,FCM)聚类多源特征筛选融合方法,该方法通过调整兰... 为解决单源传感器故障诊断可识别故障种类少、诊断精度低的问题,该文利用电流与振动传感器数据,提出了一种基于前向搜索(sequential forward selection,SFS)的模糊C均值(fuzzy C-means,FCM)聚类多源特征筛选融合方法,该方法通过调整兰德指数(adjusted rand index,ARI)来衡量聚类效果,对提取出的多源传感器特征进行筛选融合得到最优特征集。在此基础上,模拟了9种断路器故障,将其划分为3类,采用支持向量机(support vector machine,SVM)分别对单源传感器特征和多源融合特征进行分类,以验证该文提出方法的有效性,并通过其他3种常见分类器进行了对比试验。结果表明:多源融合特征识别准确率明显高于单源特征,在3类故障中分别达到95.0%、92.5%、96.5%,且在多种分类器下均能得到相似结果,兼具有效性和普适性,该文方法为多源传感器背景下的断路器故障诊断提供了新思路。 展开更多
关键词 断路器 多源传感器 数据融合 特征筛选 模糊C均值聚类 故障诊断
在线阅读 下载PDF
多元时间序列聚类算法综述 被引量:1
15
作者 郑德生 孙涵明 +2 位作者 王立远 段垚鑫 李晓瑜 《计算机科学与探索》 北大核心 2025年第3期582-601,共20页
多元时间序列(MTS)作为众多领域智能化技术的关键数据依据,其随时间推移记录了系统中多个变量的状态变化。聚类技术作为一个数据挖掘核心工具可以将数据按照其结构相似性划分为不同的簇,通过识别数据的结构和内在关系挖掘系统发展规律... 多元时间序列(MTS)作为众多领域智能化技术的关键数据依据,其随时间推移记录了系统中多个变量的状态变化。聚类技术作为一个数据挖掘核心工具可以将数据按照其结构相似性划分为不同的簇,通过识别数据的结构和内在关系挖掘系统发展规律和变量相关关系。面对多元时间序列数据结构的复杂性、变量之间的关联性以及数据高维性等为聚类分析带来的挑战,国内外已经开展了大量相关研究工作。鉴于此,对多元时间序列数据场景下的聚类分析算法进行综述。基于特征提取方式、相似性度量算法、聚类划分框架等分类标准,对现有多元时间序列聚类算法进行对比分析。对于每一类多元时间序列聚类技术,从算法原理、代表性方法、算法优缺点以及解决的问题等方面进行详细总结与剖析。进一步讨论了常用的评价标准,以及多元时间序列聚类相关公开数据集。从多变量时序数据结构特殊性出发对现有多元时间序列聚类存在的挑战及未来发展方向进行了总结与展望。 展开更多
关键词 多元时间序列 聚类算法 特征表示 相似性度量 聚类评估指标
在线阅读 下载PDF
路径掩码自编码器引导无监督属性图节点聚类
16
作者 丁新宇 孔兵 +2 位作者 陈红梅 包崇明 周丽华 《计算机科学》 北大核心 2025年第1期160-169,共10页
图聚类的目的在于发现网络的社区结构。针对目前聚类方法无法很好地获取网络深层潜在社区信息,且不能对特征进行合适的信息整合导致节点社区语义不清晰的问题,提出了一种路径掩码自编码器引导无监督属性图节点聚类模型(Path-Masked Auto... 图聚类的目的在于发现网络的社区结构。针对目前聚类方法无法很好地获取网络深层潜在社区信息,且不能对特征进行合适的信息整合导致节点社区语义不清晰的问题,提出了一种路径掩码自编码器引导无监督属性图节点聚类模型(Path-Masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering, PAUGC)。该模型通过对网络进行随机路径掩码后使用自编码器来深度挖掘网络拓扑结构,从而获得良好的全局结构语义信息,利用规范性方法来对特征进行信息整合,使节点特征能够更好地表征特征的类别信息。此外,模型结合模块最大化来抓取整个图中的底层社区群落信息,目的在于更合理地将其融合到低维度节点特征中。最后通过自训练聚类来不断迭代优化更新聚类表示以获得最终的节点特征。通过在8个基准数据集上与11种经典方法进行大量实验对比,证明了PAUGC的有效性。 展开更多
关键词 深度图聚类 无监督学习 特征信息整合 模块最大化 聚类自训练
在线阅读 下载PDF
基于跨结构特征选择和图循环自适应学习的多视图聚类 被引量:1
17
作者 辛永杰 蔡江辉 +3 位作者 贺艳婷 苏美红 史晨辉 杨海峰 《计算机科学》 北大核心 2025年第2期145-157,共13页
现有的大多数图自适应学习方法依赖于高维原始数据,且数据中不可避免地会出现噪声或信息缺失等现象,导致无法精准地选择出高维数据中的重要特征信息。此外,还忽视了在特征选择过程中多视图表示结构上的关联性。针对以上问题,提出了一种... 现有的大多数图自适应学习方法依赖于高维原始数据,且数据中不可避免地会出现噪声或信息缺失等现象,导致无法精准地选择出高维数据中的重要特征信息。此外,还忽视了在特征选择过程中多视图表示结构上的关联性。针对以上问题,提出了一种基于跨结构特征选择和图循环自适应学习的多视图聚类方法(MLFS-GCA)。首先,设计了一个跨结构特征选择框架。通过联合学习多视图表示的空间结构特点和聚类结构的一致性,将高维数据投影到低维线性子空间中,并在视图特定的基矩阵和一致性聚类结构的辅助下学习低维特征表示。其次,提出图循环自适应学习模块。通过k最邻近法(k-NN)选取投影空间中k个最近邻点,并协同矩阵低秩学习来循环地优化相似结构。最后,学习得到用于聚类任务的共享稀疏相似矩阵。通过在各种真实的多视图数据集上进行大量实验,验证了在多视图聚类中图循环自适应学习的优越性。 展开更多
关键词 多视图聚类 图循环自适应学习 跨结构特征选择 K-NN 矩阵低秩学习
在线阅读 下载PDF
发育期少女胸背部形态分类及三维特征分析 被引量:1
18
作者 邓先锋 方方 蒋蒙蒙 《现代纺织技术》 北大核心 2025年第1期65-74,共10页
为探究发育期少女的胸背部形态变化,运用手工测量和三维扫描2种方式,对55名13-17岁的发育期少女进行人体测量。对测量项目进行描述统计分析,通过R型聚类提取了胸背部形态的6个分类指标,采用K-Means聚类分析得出4种胸背部形态分类。利用... 为探究发育期少女的胸背部形态变化,运用手工测量和三维扫描2种方式,对55名13-17岁的发育期少女进行人体测量。对测量项目进行描述统计分析,通过R型聚类提取了胸背部形态的6个分类指标,采用K-Means聚类分析得出4种胸背部形态分类。利用逆向工程软件Geomagic studio对获取的三维人体模型进行相关特征点以及边界定义,提取出各乳房截面的面积,以及肩截面参数指标表征胸背部形态,并选取2名发育期少女典型样本与同胸围青年女性进行三维特征的对比。结果表明:4种胸背部形态分别对应少女胸部发育的初期、中期、中后期和后期,其中初期和中期占比60%,中后期和后期占比40%;对比发育期少女与青年女性,少女胸部更为收拢,以窄胸型居多,穿着的罩杯以A杯为主,背部形态上两者差异不明显,少女中存在少数驼背体,且总体背上部前倾较为明显。研究结果可为少女内衣的设计提供参考。 展开更多
关键词 发育期少女 胸背部形态 聚类分析 三维特征
在线阅读 下载PDF
融合主成分含噪密度聚类与综合关联分析的混合非侵入式负荷辨识方法 被引量:2
19
作者 张荣伟 唐晓杰 +4 位作者 李龙 徐晓东 洪洲 张雪 吕干云 《现代电力》 北大核心 2025年第3期401-410,共10页
为了提高电力负荷监控的准确性,研究融合主成分含噪密度聚类(density-based spatial clustering of applications with noise with principal component analysis,PCADBSCAN)的混合非侵入式负荷辨识方法。首先,针对原始负荷特征维度较... 为了提高电力负荷监控的准确性,研究融合主成分含噪密度聚类(density-based spatial clustering of applications with noise with principal component analysis,PCADBSCAN)的混合非侵入式负荷辨识方法。首先,针对原始负荷特征维度较高的问题,采用主成分分析算法对原始特征数据降维,构建负荷特征模板库,同时,获取负荷电流波形,构建负荷电流模板库。其次,采用基于密度的聚类算法对负荷特征模板库内的样本进行非监督聚类,提取各聚类簇中心。然后,计算待辨识负荷与各特征模板库聚类中心的欧式距离,完成负荷特征匹配,并计算待辨识负荷的电流波形与电流模板库内各电流波形的综合关联度,完成负荷电流波形匹配。最后,混合两次匹配结果,综合判断待辨识负荷,从而实现高可靠辨识。基于用电数据测试数据集的仿真结果显示,该方法各项指标均超过96%。 展开更多
关键词 混合非侵入式负荷辨识 主成分分析 特征降维 DBSCAN聚类 综合关联分析
在线阅读 下载PDF
基于动态联合加权的带钢表面缺陷分类方法
20
作者 王亚 甘青松 +4 位作者 沈琦 宋余庆 刘毅 韩凯 刘哲 《计算机工程》 北大核心 2025年第6期286-296,共11页
带钢表面质量是衡量钢铁产品质量的重要指标之一,针对全流程表面缺陷进行分类研究,可以减少表面缺陷的发生,同时提升表面缺陷信息捕获的准确性。在实际生产过程中,带钢缺陷样本的精准类别标签往往难以获取,因此不依赖标签数据的无监督... 带钢表面质量是衡量钢铁产品质量的重要指标之一,针对全流程表面缺陷进行分类研究,可以减少表面缺陷的发生,同时提升表面缺陷信息捕获的准确性。在实际生产过程中,带钢缺陷样本的精准类别标签往往难以获取,因此不依赖标签数据的无监督分类方法逐渐成为研究热点。现有的传统机器学习无监督分类方法对噪声数据鲁棒性差,而基于深度学习的无监督方法对数据量依赖性较强。为此,将传统的机器学习算法和深度学习算法相结合,提出一种无监督动态加权联合的带钢表面缺陷分类(DWJC)方法。首先,根据纹理特征聚类算法为缺陷图像分配初始类别标签;然后,通过卷积神经网络(CNN)提取图像的深度特征;最后,基于KL散度提出一种动态加权重标注方法,联合初始类别标签、Softmax、约束聚类等多个分类方法,在模型训练过程中不断修正初始类别标签,以获取更加稳定且精准的缺陷分类结果。在NEU公共数据集和上海宝钢缺陷数据集上进行大量实验,结果表明,DWJC分别取得了99.5%和94.3%的平均精度。 展开更多
关键词 表面缺陷分类 无监督分类 纹理特征 聚类算法 动态权重
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部