交通运输业减排是实现全局减排目标的关键。研究基于改进的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型分析影响交通运输业碳排放的主要因素,设置低碳、基准和高碳3种...交通运输业减排是实现全局减排目标的关键。研究基于改进的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型分析影响交通运输业碳排放的主要因素,设置低碳、基准和高碳3种情景方案,利用卷积神经网络-长短期记忆网络-注意力机制(Convolutional Neural Networks-Long short-Term Memory-Attention Mec.hanism,CNN-LSTM-Attention)交通运输业碳排放预测模型对中国30个省、自治区、直辖市2022—2035年交通运输业碳排放进行预测。结果显示:人口情况、经济水平和交通运输等3个维度的影响因素对交通运输业碳排放具有正向驱动作用,能源技术维度的影响因素则起负向驱动作用;CNN-LSTM-Attention交通运输业碳排放预测模型提升了模型在小样本数据集的预测能力,预测效果较好;低碳、基准和高碳3种情景下中国交通运输业的碳排放峰值将晚于2030年的总排放峰值目标实现;各省在碳排放峰值和达峰时间上存在异质性,应采取差异化、精准化的政策策略,局部上分区域、分梯次达峰,以整体上实现碳达峰目标。展开更多