期刊文献+
共找到593篇文章
< 1 2 30 >
每页显示 20 50 100
融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测 被引量:1
1
作者 黄学平 辛攀 +3 位作者 吴永明 吴留兴 邓觅 姚忠 《长江科学院院报》 北大核心 2025年第3期59-67,75,共10页
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(... 对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.03 mg/L、0.049 mg/L、0.992。 展开更多
关键词 水质预测 总氮 变分模态分解 时间卷积网络 集成预测
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
2
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
在线阅读 下载PDF
改进黏菌算法优化TCN−LSTM−MHSA的巷道锚杆(索)应力预测模型
3
作者 齐俊艳 车玉浩 +1 位作者 王磊 袁瑞甫 《工矿自动化》 北大核心 2025年第5期129-139,共11页
锚杆(索)应力的变化过程呈现明显的短期突变与长期时序依赖特征,而传统单一预测模型对长期趋势建模能力有限且对局部突变敏感性不足,往往难以全面捕捉上述复杂特征。针对该问题,提出一种基于改进黏菌算法(ISMA)优化时间卷积网络(TCN)−... 锚杆(索)应力的变化过程呈现明显的短期突变与长期时序依赖特征,而传统单一预测模型对长期趋势建模能力有限且对局部突变敏感性不足,往往难以全面捕捉上述复杂特征。针对该问题,提出一种基于改进黏菌算法(ISMA)优化时间卷积网络(TCN)−长短期记忆网络(LSTM)−多头自注意力机制(MHSA)的锚杆(索)应力预测模型。在煤矿巷道锚杆(索)应力预测问题中,模型训练过程通常涉及超参数调整、学习率选择等复杂优化任务,为提升模型的训练效率与预测精度,提出ISMA,引入邻域搜索与动态步长因子增强局部搜索能力,融合人工蜂群搜索机制提升全局搜索效率,有效增强模型跳出局部最优解的能力。TCN−LSTM−MHSA模型采用TCN提取局部时序特征,利用LSTM学习数据的长期依赖关系,通过MHSA强化对全局时序依赖的建模,从而提高模型对锚杆(索)应力的预测能力。在TCN−LSTM−MHSA模型的训练中利用ISMA对学习率进行迭代寻优,以提高模型的预测精度和速度。实验结果表明:①与黏菌算法(SMA)、遗传算法(GA)、粒子群算法(PSO)、麻雀搜索算法(SSA)相比,ISMA优化策略在多个基准函数测试中表现出更优的收敛速度与寻优能力。②在应力预测实验中,通过消融实验验证了TCN,LSTM,MHSA模块的必要性。③ISMA优化TCN−LSTM−MHSA模型在MAE,RMSE及R 2等指标上均优于BP,GRU等主流预测模型,具有更高的预测精度和稳定性。 展开更多
关键词 锚杆(索)支护 锚杆(索)应力预测 黏菌算法 时间卷积网络 长短期记忆网络 多头自注意力机制
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测
4
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测
5
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期光伏功率预测 变分模态分解 黑翅鸢优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于CEEMDAN与TCN-Attention的陆态网络GNSS高程时间序列多尺度预测
6
作者 罗亦泳 占奥文 冯小欢 《大地测量与地球动力学》 北大核心 2025年第8期781-790,共10页
提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络-注意力机制(temporal convolutional network-attention mechanism,TCN-Attention)算法的... 提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络-注意力机制(temporal convolutional network-attention mechanism,TCN-Attention)算法的多尺度预测模型(简称C-TCN-A),该模型可有效应用于GNSS高程时间序列缺失数据的插补和未来趋势的预测。该模型利用CEEMDAN对时间序列进行多尺度分解,然后基于TCN-Attention对不同尺度分量进行预测和重构得到预测结果。为验证模型的性能,选取12个观测站进行1 d与5 d预测,并与其他多种模型进行对比。结果表明,在1 d预测中,C-TCN-A的RMSE和MAE分别降低35%~40%和36%~41%,相关系数R提高25%~29%;在5 d预测中,C-TCN-A的RMSE和MAE分别降低20%~26%和20%~28%,相关系数R提高26%~33%。为验证模型的普适性,利用C-TCN-A对陆态网络99个观测站进行1 d与5 d预测。结果表明,RMSE和MAE指标总体上结果较好,误差分布集中,大多数误差小于4 mm;预测精度存在一定的空间分布差异,西北地区效果最佳。 展开更多
关键词 GNSS高程时间序列 陆态网络 改进经验模态分解 时间卷积网络
在线阅读 下载PDF
基于TCN和AUKF联合迭代的PEMFC寿命融合预测方法 被引量:1
7
作者 赵波 张领先 +3 位作者 章雷其 陈哲 刘相万 谢长君 《中国电机工程学报》 北大核心 2025年第9期3609-3623,I0029,共16页
针对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的剩余使用寿命预测问题,该文提出一种基于时序卷积神经网络(temporal convolutional network,TCN)和自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)... 针对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的剩余使用寿命预测问题,该文提出一种基于时序卷积神经网络(temporal convolutional network,TCN)和自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)联合迭代的融合预测方法。该方法首先利用TCN进行短期预测,并用贝叶斯算法计算融合权重。然后利用离散小波变换将老化数据分解为波动趋势和老化趋势,基于TCN长期迭代预测波动趋势,基于TCN和AUKF联合迭代长期预测老化趋势,并将两种趋势叠加得到长期预测结果。最后利用融合权重将多个单体PEMFC的长期预测结果相融合。基于2种工况下5个单体电池的数据验证,短期预测结果表明TCN具有高预测精度,长期预测结果表明融合过程降低了PEMFC单体间老化程度不均衡的影响,提高电堆整体寿命预测的稳定性。 展开更多
关键词 质子交换膜燃料电池 剩余使用寿命 时序卷积网络 联合迭代 融合权重
在线阅读 下载PDF
基于CBAM-STCN的齿轮箱故障智能诊断方法
8
作者 万志国 王治国 +1 位作者 赵伟 窦益华 《科学技术与工程》 北大核心 2025年第9期3760-3768,共9页
针对齿轮箱在多种工况下故障特征存在差异,故障诊断易受噪声干扰,导致故障诊断模型泛化性差和识别准确率低的问题,提出一种端到端的具有混合注意力机制和软阈值化特点的时间卷积神经网络(convolutional block attention module-sparse t... 针对齿轮箱在多种工况下故障特征存在差异,故障诊断易受噪声干扰,导致故障诊断模型泛化性差和识别准确率低的问题,提出一种端到端的具有混合注意力机制和软阈值化特点的时间卷积神经网络(convolutional block attention module-sparse temporal convolutional network with soft thresholding,CBAM-STCN)齿轮箱故障诊断模型识别分类方法。首先,利用希尔伯特变换将齿轮故障振动信号转换为包络谱信号;然后,将其输入CBAM-STCN故障诊断模型中;该模型嵌入的混合注意力机制模块(convolutional block attention module,CBAM),能够自适应学习通道和空间注意力的权重,提取与故障特征相关的敏感信息;嵌入的软阈值函数能够最小化模型输出和原输入之间的差异;最后,利用所提出的方法对两种工况、不同类型的齿轮故障进行识别分类。结果表明:CBAM-STCN故障诊断模型对齿轮故障智能诊断的平均准确率为98.95%。该方法对于齿轮箱故障的智能诊断具有一定的参考价值。 展开更多
关键词 齿轮箱 故障智能诊断 混合注意力机制 软阈值化 时间卷积神经网络
在线阅读 下载PDF
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
9
作者 许涛 南新元 +1 位作者 蔡鑫 赵濮 《南京信息工程大学学报》 北大核心 2025年第4期455-466,共12页
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,... 在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,本文提出一种新型时间序列预测框架,称为MoCo-CBDAE-TCN-Transformer.该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息.在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪.去噪后的数据通过TCN-Transformer网络进行时间序列预测.TCN-Transformer网络结合残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率.最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案. 展开更多
关键词 去噪自编码器 动量编码器 动态队列 信息噪声对比估计 时间卷积网络 TRANSFORMER
在线阅读 下载PDF
增强自适应TCN的柴油发动机剩余寿命预测模型
10
作者 张曦 杨颖 +1 位作者 陈超君 王春风 《计算机工程与设计》 北大核心 2025年第7期2071-2080,共10页
时间卷积网络在剩余使用寿命预测方面取得了显著进展,但现有模型没有考虑输入特征在不同时间步和通道的重要性,以及网络结构固定,无法灵活学习深度时间表示。针对这些问题,提出一种增强自适应时间卷积网络(EATCN)。通过改进的自注意力... 时间卷积网络在剩余使用寿命预测方面取得了显著进展,但现有模型没有考虑输入特征在不同时间步和通道的重要性,以及网络结构固定,无法灵活学习深度时间表示。针对这些问题,提出一种增强自适应时间卷积网络(EATCN)。通过改进的自注意力模块对输入特征的不同时间步进行加权,采用压缩激励模块对长期特征的不同通道进行加权。自适应时间卷积网络能够动态调整网络结构,更好地提取深层长期时间特征。在某柴油发动机制造商两个真实的数据集上进行实验,实验结果验证了所提模型的有效性。 展开更多
关键词 剩余使用寿命预测 时间卷积网络 注意力机制 压缩激励 滑动窗口 指数平滑 归一化
在线阅读 下载PDF
基于序列成分重组与时序自注意力机制改进TCN-BiLSTM的短期电力负荷预测
11
作者 易雅雯 娄素华 《电力系统及其自动化学报》 北大核心 2025年第4期78-87,共10页
针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始... 针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始负荷序列分解为多个不同频率的成分序列;其次,基于各成分序列的样本熵对多个成分序列进行K均值聚类,以获得最佳聚类数量的重组负荷序列分量;接着,将各重组分量输入所提出的负荷预测模型,获得各重组分量预测结果;最终,线性叠加各重组成分序列预测结果以获得最终负荷预测结果。算例分析表明,该方法与其他相关对比模型相比,预测均方根误差降低46.37%、模型拟合效果平均提升3.24%,表明该方法负荷预测精度高、模型拟合效果好,适用于区域级电力负荷预测。 展开更多
关键词 负荷预测 变分模态分解 样本熵 K均值聚类 时序自注意力机制 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
煤层顶板涌水量TCN-LSTM-SVM时间序列预测模型构建与应用
12
作者 刘譞 姬亚东 +6 位作者 朱开鹏 赵春虎 李凯 李超峰 袁晨瀚 李盼盼 闫鹏珍 《煤田地质与勘探》 北大核心 2025年第6期201-211,共11页
【背景】矿井涌水量的准确预测对于煤矿水害防治、安全高效生产起着重要的作用。【方法】为构建适用于西部受巨厚砂岩含水层水害威胁矿井的涌水量预测模型,以受该种水害严重影响的陕西彬长矿区某典型矿井为研究对象,基于工作面回采进尺... 【背景】矿井涌水量的准确预测对于煤矿水害防治、安全高效生产起着重要的作用。【方法】为构建适用于西部受巨厚砂岩含水层水害威胁矿井的涌水量预测模型,以受该种水害严重影响的陕西彬长矿区某典型矿井为研究对象,基于工作面回采进尺与涌水量数据之间的相关关系,选取其作为矿井涌水量时间序列预测的特征变量,提出基于时域卷积网络(temporal convolutional networks,TCN)的长短期记忆网络(long-short term memory,LSTM)−支持向量机(support vector machines,SVM)矿井工作面涌水量耦合预测模型,即TCN-LSTM-SVM模型。该模型首先通过TCN框架对原数据进行处理,提取回采进尺与涌水量之间的依赖关系和动态特征,随后将提取特征输出到后续的LSTMSVM组合模型,以进一步捕捉回采进尺与涌水量之间的时序关系和特征。【结果】模型训练与预测结果显示:TCN-LSTM-SVM耦合模型的训练集、验证集和测试集的平均绝对误差(E_(MA))为56.02~129.89 m^(3)/h,平均绝对百分比误差(E_(MAP))为3%~7%,均方根误差(E_(RMS))为82.60~162.61 m^(3)/h,决定系数(R^(2))为0.81~0.98,预测结果较BP神经网络、随机森林(RF)、Transformer等常用预测模型的准确度更高,并且避免了其中多数模型在验证集和测试集中出现的误差过大的情况。研究发现,该耦合模型既具备TCN模型的并行处理优势和多尺度特征提取能力,同时也具备LSTM-SVM组合模型优秀的预测性能和泛化能力,针对研究矿井的工作面涌水量预测与以往模型相比具有一定的优越性和适用性。【结论】研究成果为矿区相似地质条件的矿井涌水量预测提供了新的方法,对该矿地质条件类似的工作面涌水量预测以及防治水工作有一定的现实意义。 展开更多
关键词 矿井水害 煤层顶板 涌水量预测 时域卷积网络 长短期记忆网络 支持向量机 陕西彬长矿区
在线阅读 下载PDF
融合EEMD和多通道dTCN-LSTM的车辆载重状态识别模型
13
作者 徐慧琳 孙子文 《小型微型计算机系统》 北大核心 2025年第5期1112-1119,共8页
为精确识别后装车载重状态,研究集成经验模态分解(EEMD)和多通道双重膨胀因果卷积(dTCN)-长短期记忆神经网络(LSTM)融合的识别模型.利用滑动窗口截取载重时序特征向量构建特征向量矩阵,通过EEMD将特征向量矩阵分解为多个子分量矩阵并筛... 为精确识别后装车载重状态,研究集成经验模态分解(EEMD)和多通道双重膨胀因果卷积(dTCN)-长短期记忆神经网络(LSTM)融合的识别模型.利用滑动窗口截取载重时序特征向量构建特征向量矩阵,通过EEMD将特征向量矩阵分解为多个子分量矩阵并筛选不含噪声的子分量矩阵,降低时序数据噪声;由不同深度dTCN堆叠而成的多通道提取不同子分量矩阵的局部特征,各通道提取的局部特征相加送入LSTM中提取全局特征形成特征向量;最后由全连接网络将特征向量识别为装载、卸载、运行3种运行状态.采集真实车辆运行数据作为实验数据集,实验结果表明,与支持向量机(SVM)、卷积神经网络(CNN)、LSTM、CNN-LSTM、EMD-CNN-GRU、VMD-TCN-LSTM模型相比,识别准确率分别提高6.82%、5.66%、3.94%、3.21%、3.52%. 展开更多
关键词 集成经验模态分解 多通道 双重膨胀因果卷积 长短期记忆神经网络 载重状态识别
在线阅读 下载PDF
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
14
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
基于高斯TCN的汽油终馏点软测量研究
15
作者 仇美玲 李奇安 《石油炼制与化工》 北大核心 2025年第2期131-136,共6页
石油是现代社会的主要能源之一,常压蒸馏作为炼油产业的龙头,对其过程进行实时监测尤为重要。汽油终馏点为原油蒸馏过程中蒸出最后一滴汽油时的温度,是衡量成品油质量的关键指标。介绍并评估了高斯误差线性单元(GELU)的性能,提出将GELU... 石油是现代社会的主要能源之一,常压蒸馏作为炼油产业的龙头,对其过程进行实时监测尤为重要。汽油终馏点为原油蒸馏过程中蒸出最后一滴汽油时的温度,是衡量成品油质量的关键指标。介绍并评估了高斯误差线性单元(GELU)的性能,提出将GELU作为激活函数替代时间卷积网络(TCN)中的修正线性单元(ReLU),同时改变残差结构来搭建高斯TCN模型。对某炼油厂常压蒸馏塔塔顶汽油终馏点及其影响因素进行样本采集,使用偏最小二乘法(PLS)对高维自变量数据进行降维,完成汽油终馏点的辅助变量选取。使用搭建的高斯TCN软测量模型对常压蒸馏塔塔顶汽油终馏点进行预测,仿真验证所提出的模型拟合度和预测精度较传统TCN预测模型有明显的优势,为炼油产业的高效益发展提供了借鉴。 展开更多
关键词 高斯误差线性单元 时间卷积网络 软测量 汽油终馏点
在线阅读 下载PDF
基于模态分解与CatBoost-GTCN-DGM的锂电池RUL预测方法
16
作者 胡胜 李莹莹 +2 位作者 何怡婷 李景琦 张凡 《电源技术》 北大核心 2025年第8期1681-1690,共10页
针对电池剩余使用寿命(RUL)预测过程中存在数据噪声,影响预测精度的问题,提出一种结合自适应白噪声完全集成经验模态分解(CEEMDAN)、CatBoost算法、门控时间卷积网络(GTCN)和双高斯模型(DGM)的RUL预测方法。首先采用CEEMDAN分解容量信号... 针对电池剩余使用寿命(RUL)预测过程中存在数据噪声,影响预测精度的问题,提出一种结合自适应白噪声完全集成经验模态分解(CEEMDAN)、CatBoost算法、门控时间卷积网络(GTCN)和双高斯模型(DGM)的RUL预测方法。首先采用CEEMDAN分解容量信号,得到若干高频分量和低频分量。然后使用CatBoost算法量化每个分量对于原始容量数据的贡献率,并将其作为权重,以此剔除噪声对预测结果的干扰。利用GTCN和DGM建立预测子模型,最后将子模型的预测结果结合每个分量的权重进行加权融合,得到最终的RUL预测结果。以NASA锂电池数据集为实验对象,实验结果显示,所提方法的均方根误差、平均绝对误差、平均绝对百分比误差和绝对误差最小值分别为0.0135、0.0086、0.0056和1个循环,有效提升了RUL预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命 CatBoost算法 门控时间卷积网络 双高斯模型
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
17
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(tcn) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于优化TCN组合模型的短期光伏功率预测
18
作者 刘俊宏 富斯源 王亚君 《科学技术与工程》 北大核心 2025年第15期6378-6388,共11页
为提高多输入特征下光伏发电功率模型的短期预测精度,提出了一种基于优化时域卷积网络超参数的光伏功率预测组合模型(LGGWO-TCN-MHSA)。该模型集改进灰狼优化算法(levy gold gray wolf optimization,LGGWO)、时域卷积网络(temporal conv... 为提高多输入特征下光伏发电功率模型的短期预测精度,提出了一种基于优化时域卷积网络超参数的光伏功率预测组合模型(LGGWO-TCN-MHSA)。该模型集改进灰狼优化算法(levy gold gray wolf optimization,LGGWO)、时域卷积网络(temporal convolutional network,TCN)和多头自注意力机制(malti-head self-attention,MHSA)于一体。首先,采用斯皮尔曼相关系数法提取对光伏功率影响较大的主要特征,并输入至TCN预测模型;然后,将提出的多策略改进灰狼优化算法LGGWO应用于TCN内部进行超参数优化,改善模型预测性能;最后,将预测值输入至多头自注意力模型中进一步提升预测精度。实验采用澳大利亚原始光伏数据进行验证,通过与卷积神经网络(convolutional neural networks,CNN)、长短期记忆神经网络(long short-term memory,LSTM)等六组模型进行对比,所提模型在测试数据集上的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别降低了2.03%~82.0%和10.5%~80.1%,结果表明:所提方法具有较高的预测精度和良好的稳定性。 展开更多
关键词 光伏发电 光伏功率短期预测 改进灰狼优化算法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
基于CEEMDAN-IASO-TCN组合模型的中长期径流预报 被引量:1
19
作者 徐军杨 罗远林 +3 位作者 刘月馨 陈冬强 张坚 张楚 《人民长江》 北大核心 2025年第4期128-135,共8页
准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月... 准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月径流序列进行分解,然后利用IASO对TCN模型的批量大小、学习率、丢弃因子进行寻优,得到最优的时间卷积网络结构并利用最优的IASO-TCN对分量进行预测,最后重构分量预测结果得到最终月径流预测结果;以岷江流域镇江关水文站1957~2019年的月径流数据为研究对象,将所提模型与其他模型进行对比。研究结果表明:CEEMDAN-IASO-TCN模型具有较高的预测精度,训练和测试阶段的纳什系数分别达到0.9191和0.8691。研究成果可为水资源可持续利用提供可靠依据。 展开更多
关键词 中长期径流预报 自适应噪声完备集合经验模态分解 原子搜索算法 时间卷积网络 岷江流域
在线阅读 下载PDF
基于多头注意力机制和TCN-BiLSTM的IGBT剩余寿命预测方法
20
作者 田源 高树国 +2 位作者 邢超 朱瑞敏 姜士哲 《电气工程学报》 北大核心 2025年第3期69-77,共9页
针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memor... 针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memory,BiLSTM)网络融合的IGBT剩余寿命预测方法。首先,基于IGBT封装模块老化机理的深入分析,设计并搭建加速老化试验平台,通过控制功率循环过程中的结温波动,施加电流加速IGBT模块的老化进程,采用高精度数据采集系统获取特征参量集-射极饱和压降Vce(sat)老化数据。其次,以TCN模型为基础,引入MA和BiLSTM神经网络构建预测模型,对IGBT劣化特征序列进行预测验证。结果表明,在相同条件下,所提模型相对于传统时序预测模型,在不显著增加模型复杂度和计算负担的情况下,具有更高的精度,充分验证了该模型在工程实践中应用于IGBT剩余寿命在线预测的可行性与高效性。 展开更多
关键词 IGBT 时域卷积网络 双向长短时记忆网络 多头注意力机制 老化预测
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部