The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c...The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.展开更多
The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excel...The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excellent phenol hydrogenation activity(conversion 96.9%)at 160℃,3 MPa,which is higher than that of leaf shaped Co@NC-67L-450 catalyst(conversion 75.4%).We demonstrated Co_(3)O_(4)was reduced to the Co^(0)during the reaction.Moreover,CoNx species contribute to the superior hydrogenation activity of phenol.The Co-based catalysts can be easily recovered through the magnetic separation and performed the high stability.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Ammonia borane(AB)has received much attention as an environmentally friendly,non-toxic,room temperature stable hydrogen storage material with high hydrogen content of 19.6%.However,its hydrolysis for hydrogen producti...Ammonia borane(AB)has received much attention as an environmentally friendly,non-toxic,room temperature stable hydrogen storage material with high hydrogen content of 19.6%.However,its hydrolysis for hydrogen production at room-temperature is kinetically slow and requires precious metal catalysts.In this work,it is found that the prepared Raney Ni W-r treated with high concentration of NaOH(6.25 mol/L)at 110℃exhibited excellent catalytic performance for AB hydrolysis at room temperature.The Raney Ni W-r can promote the AB complete hydrolysis within 60 s under basic condition at small sized trials,even higher than that of the 20%Pt/C catalyst.Its apparent activation energy at room temperature is only 26.6 kJ/mol and the turnover frequency(TOF)value is as high as 51.42 min-1.Owing to its high density and magnetic properties,the catalyst is very easy for magnetic separation.Furthermore,possible mechanism of the hydrolytic reaction of AB based on experimental results is proposed.As a well-established industrial catalyst,Raney Ni has been prepared on a large scale at low cost.This study provides a promising pathway for the large-scale preparation of low-cost and recyclable catalysts for AB hydrolysis.展开更多
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ...Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.展开更多
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s...Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.展开更多
The semiconductor photocatalysis are considered as one of the most promising candidates in hydrogen energy source and environmental remediation area.In this paper,flower-shaped SnS,is successfully combined on g-C,Ns,a...The semiconductor photocatalysis are considered as one of the most promising candidates in hydrogen energy source and environmental remediation area.In this paper,flower-shaped SnS,is successfully combined on g-C,Ns,and the well matching band structure successfully constitutes a new Type-II heterojunction.As expected,the photocatalytic hydrogen production experiment showed that the quantity of hydrogen produced on 5% SnS_(2)/C_(3)N_(5)was 922.5μmol/(g.h),which is 3.6 times higher than that of pure g-C_(3)N_(5).Meanwhile,in photocatalytic degradation of methylene blue,5%SnS2/C,Ns composite material can degrade 95% of contaminants within 40 min,showing good photocatalytic degradation performance.The mechanism study indicates that SnS_(2)/C_(3)N_(5)heterojunction improves the photogenerated charge migration rate and reduces the electron-hole recombination rate,and effectively improves the photocatalytic performance of g-C_(3)N_(5).This work provides a new idea for designing C,Ns-based heterojunctions with efficient hydrogen production and degradation performance.展开更多
Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),...Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.展开更多
Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its ...Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb_3PO_4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb_3PO_4 and worth in industrial application.展开更多
Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble meta...Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.展开更多
Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the T...Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.展开更多
The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of ...The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.展开更多
Pure Cu nanowires as catalyst were prepared by electrochemical deposition and were used in CO2 hydrogenation to methanol.The active sites of the Cu based catalyst were discussed.The performance and structural developm...Pure Cu nanowires as catalyst were prepared by electrochemical deposition and were used in CO2 hydrogenation to methanol.The active sites of the Cu based catalyst were discussed.The performance and structural development of the catalyst were observed during CO2 hydrogenation.A mechanism for the deactivation of the catalyst was discussed.The key factors that affect the deactivation of the catalyst were found.Cu nanowire sample was characterized by SEM,EDS,XRD,and BET.The results show that Cu nanowires have very high sintering resistance and catalytic stability.This helps to develop high performance catalysts.The changes in the grain size,SEM morphology and catalytic properties of the sample during CO2 hydrogenation show that the migration of the Cu atoms on the surface of the Cu nanowires can occur.Continuous migration of Cu atoms and sintering of Cu grains can lead to flow blockage in gas channels.The gas channel flow blockage or the sintering of Cu grains can lead to deactivation of the catalyst.However,the shape of catalytic performance curve indicates that the main reason for the deactivation of the catalyst is the gas channel flow blockage.展开更多
Highly active and stable nickel catalyst for dehydrogenation of methane and hydrogenation of benzene is prepared from a precursor with hydrotalcite-like anionic clam structure by coprecipitation. The nickel particles ...Highly active and stable nickel catalyst for dehydrogenation of methane and hydrogenation of benzene is prepared from a precursor with hydrotalcite-like anionic clam structure by coprecipitation. The nickel particles have a narrow size distribution in several nanometers, and have a strong interaction with other components such as Al2O3. This catalyst is highly sensitive to further modification by doping and to reaction condition. On a modified catalyst, benzene hydrogenation to cyclohexane proceeds to complete at 373 K. While on another catalyst, different structured nanocarbons are obtained at moderate temperatures. It is found that the thioresistance of the nickel catalyst in hydrogenation can be improved by doping.展开更多
The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on...The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.展开更多
Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic ...Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes(CoRu@N-CNTs),was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis.Benefiting from the electronic communication between Co and Ru sites,the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity.To deliver a current density of 10 mA·cm^(-2),it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec^(-1)in 1 mol·L^(-1)potassium hydroxide(KOH)solution,outperforming the benchmark Pt/C catalyst.The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion.展开更多
The intensifying global energy crisis,coupled with environmental degradation from fossil fuels,highlights that photocatalytic hydrogen evolution technology offers a promising solution due to its efficiency and sustain...The intensifying global energy crisis,coupled with environmental degradation from fossil fuels,highlights that photocatalytic hydrogen evolution technology offers a promising solution due to its efficiency and sustainability.In this study,we synthesized CeO_(2)/Cd_(7.23)Zn_(2.77)S_(10)-DETA(diethylenetriamine is abbreviated as DETA,and subsequently CeO_(2)is referred to as EO,Cd_(7.23)Zn_(2.77)S_(10)-DETA is abbreviated as ZCS,and the composite with EO comprising 30%is abbreviated as EO/ZCS)nanocomposites with S-scheme heterojunctions.Under conditions without external co-catalysts and utilizing only visible light as the excitation source,EO/ZCS nanocomposites exhibited outstanding photocatalytic hydrogen evolution activity and remarkable stability,presenting significant advantages over conventional methods that rely on co-catalysts and ultraviolet light.The photocatalytic hydrogen evolution rate of EO/ZCS nanocomposites reached 4.11 mmol/(g·h),significantly surpassing that of EO(trace)and ZCS(2.78 mmol/(g·h)).This substantial enhancement is attributed to the S-scheme charge transfer mechanism at the heterojunctions in EO/ZCS nanocomposites,which effectively facilitates the efficient separation and transfer of photogenerated electron-hole pairs,thereby substantially enhancing photocatalytic hydrogen evolution activity.Through techniques such as X-ray photoelectron spectroscopy(XPS)and theoretical calculations,we confirmed the formation of S-scheme heterojunctions and elucidated their photocatalytic hydrogen evolution mechanism.The results underscore the potential of EO/ZCS nanocomposites as highly efficient and stable photocatalysts for hydrogen production under environmentally benign conditions.展开更多
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav...The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.展开更多
文摘The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.
基金The National Natural Science Foundation of China(22102194)The Science and Technology Plan of Gansu Province(20JR10RA044)The Youth Innovation Promotion Association of CAS(2022427).
文摘The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excellent phenol hydrogenation activity(conversion 96.9%)at 160℃,3 MPa,which is higher than that of leaf shaped Co@NC-67L-450 catalyst(conversion 75.4%).We demonstrated Co_(3)O_(4)was reduced to the Co^(0)during the reaction.Moreover,CoNx species contribute to the superior hydrogenation activity of phenol.The Co-based catalysts can be easily recovered through the magnetic separation and performed the high stability.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
基金supported by the National Natural Science Foundation of China(21908135)Natural Science Foundation of Shanxi Datong University(2022K23)+1 种基金Graduate Research Innovation and Practice Innovation Projects of Shanxi Datong University(23CX31)Postgraduate Educational Reform and Research Program of Shanxi Datong University(23JG07)。
文摘Ammonia borane(AB)has received much attention as an environmentally friendly,non-toxic,room temperature stable hydrogen storage material with high hydrogen content of 19.6%.However,its hydrolysis for hydrogen production at room-temperature is kinetically slow and requires precious metal catalysts.In this work,it is found that the prepared Raney Ni W-r treated with high concentration of NaOH(6.25 mol/L)at 110℃exhibited excellent catalytic performance for AB hydrolysis at room temperature.The Raney Ni W-r can promote the AB complete hydrolysis within 60 s under basic condition at small sized trials,even higher than that of the 20%Pt/C catalyst.Its apparent activation energy at room temperature is only 26.6 kJ/mol and the turnover frequency(TOF)value is as high as 51.42 min-1.Owing to its high density and magnetic properties,the catalyst is very easy for magnetic separation.Furthermore,possible mechanism of the hydrolytic reaction of AB based on experimental results is proposed.As a well-established industrial catalyst,Raney Ni has been prepared on a large scale at low cost.This study provides a promising pathway for the large-scale preparation of low-cost and recyclable catalysts for AB hydrolysis.
基金financially supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20241181)the State Key Laboratory of AnalyticalChemistry for Life Science,School of Chemistry and Chemical Engineering,Nanjing University(Grant No.SKLACLS2419)。
文摘Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.
文摘Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.
基金This project was supported by the Fundamental Research Program of Shanxi Province(202303021221058)。
文摘The semiconductor photocatalysis are considered as one of the most promising candidates in hydrogen energy source and environmental remediation area.In this paper,flower-shaped SnS,is successfully combined on g-C,Ns,and the well matching band structure successfully constitutes a new Type-II heterojunction.As expected,the photocatalytic hydrogen production experiment showed that the quantity of hydrogen produced on 5% SnS_(2)/C_(3)N_(5)was 922.5μmol/(g.h),which is 3.6 times higher than that of pure g-C_(3)N_(5).Meanwhile,in photocatalytic degradation of methylene blue,5%SnS2/C,Ns composite material can degrade 95% of contaminants within 40 min,showing good photocatalytic degradation performance.The mechanism study indicates that SnS_(2)/C_(3)N_(5)heterojunction improves the photogenerated charge migration rate and reduces the electron-hole recombination rate,and effectively improves the photocatalytic performance of g-C_(3)N_(5).This work provides a new idea for designing C,Ns-based heterojunctions with efficient hydrogen production and degradation performance.
基金National Natural Science Foundation of China(21806023)Natural Science Foundation of Hunan Province(2021JJ40199)+2 种基金Education Department Foundation of Hunan Province(20C0813)Hunan University of Science and Technology Fundamental Research FundsPostgraduate Scientific Research Innovation Project of Hunan Province(CX20240877)。
文摘Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.
基金Project(21576074)supported by the National Natural Science Foundation of China
文摘Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb_3PO_4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb_3PO_4 and worth in industrial application.
文摘Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.
文摘Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.
基金Project(51276154)supported by the National Natural Science Foundation of ChinaProject(2012010111014)supported by the University Doctoral Subject Special Foundation of China
文摘The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.
基金Project(51074205)supported by the National Natural Science Foundation of China
文摘Pure Cu nanowires as catalyst were prepared by electrochemical deposition and were used in CO2 hydrogenation to methanol.The active sites of the Cu based catalyst were discussed.The performance and structural development of the catalyst were observed during CO2 hydrogenation.A mechanism for the deactivation of the catalyst was discussed.The key factors that affect the deactivation of the catalyst were found.Cu nanowire sample was characterized by SEM,EDS,XRD,and BET.The results show that Cu nanowires have very high sintering resistance and catalytic stability.This helps to develop high performance catalysts.The changes in the grain size,SEM morphology and catalytic properties of the sample during CO2 hydrogenation show that the migration of the Cu atoms on the surface of the Cu nanowires can occur.Continuous migration of Cu atoms and sintering of Cu grains can lead to flow blockage in gas channels.The gas channel flow blockage or the sintering of Cu grains can lead to deactivation of the catalyst.However,the shape of catalytic performance curve indicates that the main reason for the deactivation of the catalyst is the gas channel flow blockage.
基金Supported by the National Natural Science Foundation of China(No. 29792070-9, 29876032).
文摘Highly active and stable nickel catalyst for dehydrogenation of methane and hydrogenation of benzene is prepared from a precursor with hydrotalcite-like anionic clam structure by coprecipitation. The nickel particles have a narrow size distribution in several nanometers, and have a strong interaction with other components such as Al2O3. This catalyst is highly sensitive to further modification by doping and to reaction condition. On a modified catalyst, benzene hydrogenation to cyclohexane proceeds to complete at 373 K. While on another catalyst, different structured nanocarbons are obtained at moderate temperatures. It is found that the thioresistance of the nickel catalyst in hydrogenation can be improved by doping.
文摘The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.
基金supported by the National Natural Science Foundation of China(No.52072226,U22A20144)Key Research and Development Program of Shaanxi(2024GX-YBXM-466)+1 种基金Science and Technology Program of Xi'an,China(22GXFW0013)Science and Technology Program of Weiyang District of Xi'an,China(202315)。
文摘Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes(CoRu@N-CNTs),was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis.Benefiting from the electronic communication between Co and Ru sites,the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity.To deliver a current density of 10 mA·cm^(-2),it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec^(-1)in 1 mol·L^(-1)potassium hydroxide(KOH)solution,outperforming the benchmark Pt/C catalyst.The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion.
基金Project(42407636)supported by the National Natural Science Foundation of ChinaProject(2022AH040068)supported by the Major Foundation of the Educational Commission of Anhui Province,China+2 种基金Project(2023AH051861)supported by the Natural Science Research Project for Colleges and Universities in Anhui Province,ChinaProject(SPYJ202201)supported by the Talent Introduction Foundation of Anhui Science and Technology University,ChinaProject(202310879096)supported by the Innovation and Entrepreneurship Training Program for College Students,China。
文摘The intensifying global energy crisis,coupled with environmental degradation from fossil fuels,highlights that photocatalytic hydrogen evolution technology offers a promising solution due to its efficiency and sustainability.In this study,we synthesized CeO_(2)/Cd_(7.23)Zn_(2.77)S_(10)-DETA(diethylenetriamine is abbreviated as DETA,and subsequently CeO_(2)is referred to as EO,Cd_(7.23)Zn_(2.77)S_(10)-DETA is abbreviated as ZCS,and the composite with EO comprising 30%is abbreviated as EO/ZCS)nanocomposites with S-scheme heterojunctions.Under conditions without external co-catalysts and utilizing only visible light as the excitation source,EO/ZCS nanocomposites exhibited outstanding photocatalytic hydrogen evolution activity and remarkable stability,presenting significant advantages over conventional methods that rely on co-catalysts and ultraviolet light.The photocatalytic hydrogen evolution rate of EO/ZCS nanocomposites reached 4.11 mmol/(g·h),significantly surpassing that of EO(trace)and ZCS(2.78 mmol/(g·h)).This substantial enhancement is attributed to the S-scheme charge transfer mechanism at the heterojunctions in EO/ZCS nanocomposites,which effectively facilitates the efficient separation and transfer of photogenerated electron-hole pairs,thereby substantially enhancing photocatalytic hydrogen evolution activity.Through techniques such as X-ray photoelectron spectroscopy(XPS)and theoretical calculations,we confirmed the formation of S-scheme heterojunctions and elucidated their photocatalytic hydrogen evolution mechanism.The results underscore the potential of EO/ZCS nanocomposites as highly efficient and stable photocatalysts for hydrogen production under environmentally benign conditions.
文摘The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.