Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cyclin...Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cycling leads to the accumulation of undesirable stresses,resulting in pulverization of silicon microparticles and shortened lifespan of the batteries.Herein,a composite film of Cu-PET-Cu is proposed as the current collector(CC)forμSi anodes to replace the conventional Cu CC.Cu-PET-Cu CC is prepared by depositing Cu on both sides of a polyethylene terephthalate(PET)film.The PET layer promises good ductility of the film,permitting the Cu-PET-Cu CC to accommodate the volumetric changes of silicon microparticles and facilitates the stress release through ductile deformation.As a result,theμSi electrode with Cu-PET-Cu CC retains a high specific capacity of 2181 mA h g^(-1),whereas theμSi electrode with Cu CC(μSi/Cu)exhibits a specific capacity of 1285 mA h g^(-1)after 80 cycles.The stress relieving effect of CuPET-Cu was demonstrated by in-situ fiber optic stress monitoring and multi-physics simulations.This work proposes an effective stress relief strategy at the electrode level for the practical implementation ofμSi anodes.展开更多
Mucin 2(MUC2)is a critical component of the intestinal mucus barrier.Lactic acid bacteria(LAB)strains can improve mucosal homeostasis.In this study,we determined the expression of Muc2 induced by dead bacteria and cel...Mucin 2(MUC2)is a critical component of the intestinal mucus barrier.Lactic acid bacteria(LAB)strains can improve mucosal homeostasis.In this study,we determined the expression of Muc2 induced by dead bacteria and cell-free conditioned medium(CM)of 50 LAB strains in the human goblet cell line,LS174T.Dead bacteria or CM of LAB affected the Muc2 expression in a species-and strain-specific manner under homeostasis.Next,LAB strains with different regulatory abilities were selected,gavaged into mice,and exposed to dextran sodium sulfate(DSS)after 1 week.Different LAB strains inhibited intestinal injury to different degrees,with Lactobacillus acidophilus FCQHC4L1 exerting the most potent effect.FCQHC4L1 significantly decreased the secretion of pro-inflammatory factors,promoted the expression and secretion of mucin,and inhibited colitis development.This strain also regulated the gut microbiota and increased the secretion of butyric acid.Moreover,CM of FCQHC4L1 inhibited endoplasmic reticulum(ER)stress and ameliorated the abnormal expression of MUC2 by suppressing the activation of the GRP78/ATF6 and GRP78/IRE1/XBP1 signaling pathways.Our results highlight the potential of FCQHC4L1 as a therapeutic agent for strengthening the mucus barrier and improving the gut health.展开更多
Foods and animal feeds frequently become contaminated with the nephrotoxic ochratoxin A(OTA).Our prior research has indicated that ursolic acid(UA),which is widely present in fruits and medicinal plants,has the potent...Foods and animal feeds frequently become contaminated with the nephrotoxic ochratoxin A(OTA).Our prior research has indicated that ursolic acid(UA),which is widely present in fruits and medicinal plants,has the potential to alleviate nephrotoxicity triggered by OTA.Additionally,excessive induction of endoplasmic reticulum(ER)-phagy exacerbates OTA-induced apoptosis.Therefore,further investigation is essential to comprehend whether UA can mitigate OTA-induced apoptosis by influencing ER-phagy.This objective is accomplished through a series of experiments involving assessments of cell viability,apoptosis,fluorescence microscopy,and western blot analysis.The outcomes of these experiments reveal that pre-treatment with 4μmol/L UA for 2 h can markedly reverse the elevated apoptotic rate,the co-localization of ER and lysosomes,and the protein expressions of GRP78,p-eIF2α,Chop,Bax,and Bak,as well as the reduced cell viability and the protein expressions of Lonp1,Trap1,p62,Tex264,FAM134B,Bcl-2,and Bcl-xl,all caused by exposure to 1μmol/L OTA for 24 h in human proximal tubule epithelial-originated kidney-2(HK-2)cells(P<0.05).Interestingly,the increased expression of LC3B-II induced by OTA is further amplified by UA pre-treatment(P<0.05).In conclusion,OTA triggers a harmful feedback loop between ER stress(ERS)and excessive ER-phagy,thereby further promoting ERS-and mitochondrial-mediated apoptosis in vitro.However,this effect is significantly mitigated by UA through the inhibition of autophagosome-lysosome fusion,consequently blocking the excessive ER-phagic flux.展开更多
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin...To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.展开更多
Over one-third of 700,000 military personnel who served in the first Gulf War(GW)suffer from an assortment of symptoms,including cognitive and memory problems,musculoskeletal pain,gastrointestinal discomfort,fatigue,a...Over one-third of 700,000 military personnel who served in the first Gulf War(GW)suffer from an assortment of symptoms,including cognitive and memory problems,musculoskeletal pain,gastrointestinal discomfort,fatigue,and respiratory issues[1,2].The precise etiology of Gulf War illness(GWI)is unclear.However,epidemiological and preclinical studies imply that exposures to the prophylactic drug pyridostigmine bromide,insecticides,pesticides,smoke from oil well fires,and interaction between these exposures and war-related stress underlie this illness[2].As per the Kansas case definition,GWI is a chronic multi-symptom illness displaying one moderately severe and/or multiple symptoms of any severity in at least 3 of 6 symptom domains(fatigue,pain,neurological/cognitive/mood,skin,gastrointestinal,respiratory)[1,2].While the exact pathophysiological changes underlying GWI have not been identified,alterations in immune regulation and dysregulation of the redox balance have been observed in GWI,resulting in chronic systemic inflammation and neuroinflammation[2].展开更多
In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensi...In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations.展开更多
Background Little is known about the association between stressors(especially positive stressors)during pregnancy and postpartum depression and anxiety.Aims We investigated the association between positive and negativ...Background Little is known about the association between stressors(especially positive stressors)during pregnancy and postpartum depression and anxiety.Aims We investigated the association between positive and negative stress events during different stages of pregnancy and postpartum mental health outcomes among low-income pregnant women with symptoms of anxiety in Pakistan and evaluated whether an intervention based on cognitive behavioural therapy(CBT)had a regulatory effect.Methods Participants were 621 pregnant Pakistani women with mild anxiety.Using the Pregnancy Experience Scale-Brief Version,six scores were created to assess positive and negative stressors.We performed a multivariate linear regression to examine whether these six scores,measured both at baseline and in the third trimester,were associated with postpartum anxiety and depressive symptoms.The effect of the intervention on this relationship was examined by adding an interaction term to the regression model.Results Hassles frequency measured in the third trimester was positively associated with depression(B=0.22,95%confidence interval(Cl):0.09 to 0.36)and anxiety(B=0.19,95%Cl:0.08to 0.30).At the same timepoint,uplifts intensity was negatively associated with symptoms of depression(B=-0.82,95%Cl:1.46 to-0.18)and anxiety(B=-0.70,95%Cl:-1.25 to-0.15),whereas hassles intensity was positively related to symptoms of depression(B=1.02,95%Cl:0.36 to 1.67)and anxiety(B=0.90,95%Cl:0.34 to 1.47).The intensity ratio of hassles to uplifts reported in the third trimester was positively related to both depression(B=1.40,95%Cl:0.59 to 2.20)and anxiety(B=1.26,95%Cl:0.57 to 1.96).The intervention strengthened the overall positive effects of uplfts and the negative effects of hassles.Pregnancy experiences at baseline during early pregnancy to mid-pregnancy were not associated with mental health outcomes.Conclusions Stressors in the third trimester but not earlier in pregnancy were associated with postpartum symptoms of anxiety and depression.The CBT intervention modified the association between pregnancy stressors and postpartum mental health outcomes.Programmes that promote positive experiences and reduce negative experiences,especially in late pregnancy,may mitigate postpartum mental health consequences.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti...Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on s...Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.展开更多
Probiotics could effectively eliminate excess reactive oxygen species(ROS)generated during aging or lipid metabolism disorders,but their mechanism is unclear.The major purpose of this study was to investigate the mech...Probiotics could effectively eliminate excess reactive oxygen species(ROS)generated during aging or lipid metabolism disorders,but their mechanism is unclear.The major purpose of this study was to investigate the mechanism of Lactiplantibacillus plantarun AR113 alleviating oxidative stress injury in the D-galactose induced aging mice.The result showed that pretreatment with L.plantarun AR113 significantly relieving H_(2)O_(2)induced cytotoxicity in HepG2 cells by maintain cell membrane integrity and increasing antioxidant enzyme activities.In D-galactose induced aging mice,L.plantarun AR113 could significantly attenuate liver damage and inflammatory infiltration by promoting endogenous glutathione(GSH)synthesis and activating the Nrf2/Keap1 signaling pathway in mice,and increasing the expression of regulated phaseⅡdetoxification enzymes and antioxidant enzymes.Further analysis shown that gavage of L.plantarun AR113 could significantly reduce the expression of G protein-coupled receptor 78(GPR78)and C/EBP homologous protein(CHOP)proteins,and promote the restoration of endoplasmic reticulum(ER)homeostasis,thereby activating cell anti-apoptotic pathways.These results were also confirmed in H_(2)O_(2)-treated HepG2 experiments.It indicated that L.plantarun AR113 could inhibit D-galactose-induced liver injury through dual inhibition of ER stress and oxidative stress.L.plantarun AR113 have good application potential in anti-aging and alleviating metabolic disorders.展开更多
Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and de...Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and depressive symptoms among civilians residing in armed conflictaffected regions.Methods This meta-analysis was conducted in accordance with the Preferred Reporting Items forSystematic Reviews and Meta-Analyses.A literature search employing MEDLINE(R),Embase Classic+Embase,APA PsyclNFO,Ovid Healthstar,Journal@Ovid Full Text,Cochrane,PTSDpubs and CINAHL was conducted from inception until 19 March 2024 to identify relevant studies.Quality assessment was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies,and a Comprehensive Meta-Analysiswas usedto conduct the statistical analysis.Results The search yielded 38595 articles,of which 57 were considered eligible for inclusion.The included studies comprised data from 64596 participants.We estimated a prevalence of 23.70%(95%CI 19.50%to28.40%)forPTSD symptomsand 25.60%(95%Cl 20.70%to 31.10%)for depressive features among war-afflicted civilians.The subgroup analysis based on time since the war and the country's economic status revealed the highest prevalence for both PTSD and depressive symptoms was present during the years of war and in low/middle-incomecountries.Conclusions The results of this study provide conclusive evidence of the detrimental impacts of armed conflict on mental health outcomes.Hence,it is crucial to emphasise the significance of both physical and mental health in the aftermath of war and take appropriate humanistic measures to overcome challenges in the management of psychiatric illnesses.展开更多
In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apo...In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apoptosis and autophagy during 5 days ageing.TM-induced ER stress reduced shear force,enhanced myofibril fragmentation index(MFI),disrupted myofibril structure,increased desmin degradation,and activatedμ-calpain and caspase-12.In addition,TM-induced ER stress increased the expression of Bax,Bim,and cytochrome c,and decreased the expression of Bcl-x L.Furthermore,TM-induced ER stress improved the conversion of LC3I to LC3II,raised the expression of Beclin-1,and decreased the expression of p62,PI3K,and m TOR.The opposite results were observed after 4-PBA treatment.These results suggested that ER stress could improve chicken tenderness,promote apoptosis and autophagy during chicken postmortem ageing.展开更多
Urbanization has resulted in a significant degra-dation of soil quality,subjecting plants to persistent abiotic stressors such as heavy metal pollution,salinization,and drought.UDP-glycosyltransferases(UGTs)participat...Urbanization has resulted in a significant degra-dation of soil quality,subjecting plants to persistent abiotic stressors such as heavy metal pollution,salinization,and drought.UDP-glycosyltransferases(UGTs)participate in protein glycosylation,secondary metabolite synthesis,and detoxification of exogenous toxic substances.Iris sanguinea Donn ex Hornem exhibits a high degree of resistance to various abiotic stressors.To enhance the plant’s response to adversity,a novel glycosyltransferase belonging to the UGT78 family,encoding flavonoid 3-O-glucosyltransferase(UF3GT),was cloned from the monocot species I.san-guinea.Compared with the control group,overexpression of IsUGT78 enhanced sensitivity to cadmium stress,while showing no significant impact under NaCl and d-sorbitol treatments.Under cadmium treatment,arabidopsis exoge-nously transformed with the IsUGT78 gene possessed lower germination,fresh weight,root length,and chlorophyll con-tent and increased malondialdehyde content than the wild type arabidopsis.In addition,metabolomics in leaves led to the identification of 299 flavonoid metabolites,eight and 127 which were significantly up-and down-regulated,respec-tively,in the transgenic plants.Of note,all eight upregulated flavonoid compounds were glycosylated.Given that arabi-dopsis,which exogenously expresses the IsUGT78 gene,has reduced resistance to cadmium,IsUGT78 may lead to a reduced ability to cope with cadmium stress.展开更多
Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect...Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.展开更多
BACKGROUND:Postpartum posttraumatic stress disorder(PTSD)can occur in women who give birth after emergency admission.The identification of risk factors for this condition is crucial for developing effective preventive...BACKGROUND:Postpartum posttraumatic stress disorder(PTSD)can occur in women who give birth after emergency admission.The identification of risk factors for this condition is crucial for developing effective preventive measures.This retrospective study aimed to explore the incidence and risk factors for postpartum PTSD in women who give birth after emergency admission.METHODS:Medical records of women who gave birth after emergency admission were collected between March 2021 and April 2023.The patients’general conditions and perinatal clinical indicators were recorded.The puerperae were divided into PTSD group and control group based on symptom occurrence at six weeks postpartum.Multivariate logistic regression analysis was performed to identify risk factors.RESULTS:A total of 276 puerperae were included,with a PTSD incidence of 20.3% at six weeks postpartum.Multivariate logistic regression analysis identified emergency cesarean section(odds ratio[OR]=2.102;95%confidence interval[CI]:1.114-3.966,P=0.022),admission to the emergency department after midnight(12:00 AM)(OR=2.245;95%CI:1.170-4.305,P<0.001),and cervical dilation(OR=3.203;95%CI:1.670–6.141,P=0.039)as independent risk factors for postpartum PTSD.Analgesia pump use(OR=0.500;95%CI:0.259–0.966,P=0.015)was found to be a protective factor against postpartum PTSD.CONCLUSION:Emergency cesarean section,admission to the emergency department after midnight,and cervical dilation were identified as independent risk factors for postpartum PTSD,while analgesic pump use was a protective factor.These findings provide insights for developing more effective preventive measures for women who give birth after emergency admission.展开更多
In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research...In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements.展开更多
Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectrosc...Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.展开更多
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
基金supported by the the National Key R&D Program of China(2022YFB3803500)the Natural Science Foundation of Hubei Province(2021CFA066).
文摘Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cycling leads to the accumulation of undesirable stresses,resulting in pulverization of silicon microparticles and shortened lifespan of the batteries.Herein,a composite film of Cu-PET-Cu is proposed as the current collector(CC)forμSi anodes to replace the conventional Cu CC.Cu-PET-Cu CC is prepared by depositing Cu on both sides of a polyethylene terephthalate(PET)film.The PET layer promises good ductility of the film,permitting the Cu-PET-Cu CC to accommodate the volumetric changes of silicon microparticles and facilitates the stress release through ductile deformation.As a result,theμSi electrode with Cu-PET-Cu CC retains a high specific capacity of 2181 mA h g^(-1),whereas theμSi electrode with Cu CC(μSi/Cu)exhibits a specific capacity of 1285 mA h g^(-1)after 80 cycles.The stress relieving effect of CuPET-Cu was demonstrated by in-situ fiber optic stress monitoring and multi-physics simulations.This work proposes an effective stress relief strategy at the electrode level for the practical implementation ofμSi anodes.
基金funded by the Guangdong Province Key Research and Development Project(2022B111107006)the National Natural Science Foundation of China(32021005 and 31820103010)the Fundamental Research Funds for the Central Universities(JUSRP622013)。
文摘Mucin 2(MUC2)is a critical component of the intestinal mucus barrier.Lactic acid bacteria(LAB)strains can improve mucosal homeostasis.In this study,we determined the expression of Muc2 induced by dead bacteria and cell-free conditioned medium(CM)of 50 LAB strains in the human goblet cell line,LS174T.Dead bacteria or CM of LAB affected the Muc2 expression in a species-and strain-specific manner under homeostasis.Next,LAB strains with different regulatory abilities were selected,gavaged into mice,and exposed to dextran sodium sulfate(DSS)after 1 week.Different LAB strains inhibited intestinal injury to different degrees,with Lactobacillus acidophilus FCQHC4L1 exerting the most potent effect.FCQHC4L1 significantly decreased the secretion of pro-inflammatory factors,promoted the expression and secretion of mucin,and inhibited colitis development.This strain also regulated the gut microbiota and increased the secretion of butyric acid.Moreover,CM of FCQHC4L1 inhibited endoplasmic reticulum(ER)stress and ameliorated the abnormal expression of MUC2 by suppressing the activation of the GRP78/ATF6 and GRP78/IRE1/XBP1 signaling pathways.Our results highlight the potential of FCQHC4L1 as a therapeutic agent for strengthening the mucus barrier and improving the gut health.
基金financially supported by the National Natural Science Foundation of China(82060598,32260587)the Natural Science Foundation of Guizhou Province(QKH-J-ZK[2021]181)+4 种基金the Scientific Research Program of Guizhou Provincial Department of Education(QJJ[2023]019)the Science&Technology Program of Guizhou Province(QKHPTRC-CXTD[2022]014)the Excellent Youth Talents of Zunyi Medical University(17zy-006)the Innovation and Entrepreneurship Training Program for College Students of Guizhou Province(S202210661138)the Innovation and Entrepreneurship Training Program for College Students of Zunyi Medical University(ZYDC2021108)。
文摘Foods and animal feeds frequently become contaminated with the nephrotoxic ochratoxin A(OTA).Our prior research has indicated that ursolic acid(UA),which is widely present in fruits and medicinal plants,has the potential to alleviate nephrotoxicity triggered by OTA.Additionally,excessive induction of endoplasmic reticulum(ER)-phagy exacerbates OTA-induced apoptosis.Therefore,further investigation is essential to comprehend whether UA can mitigate OTA-induced apoptosis by influencing ER-phagy.This objective is accomplished through a series of experiments involving assessments of cell viability,apoptosis,fluorescence microscopy,and western blot analysis.The outcomes of these experiments reveal that pre-treatment with 4μmol/L UA for 2 h can markedly reverse the elevated apoptotic rate,the co-localization of ER and lysosomes,and the protein expressions of GRP78,p-eIF2α,Chop,Bax,and Bak,as well as the reduced cell viability and the protein expressions of Lonp1,Trap1,p62,Tex264,FAM134B,Bcl-2,and Bcl-xl,all caused by exposure to 1μmol/L OTA for 24 h in human proximal tubule epithelial-originated kidney-2(HK-2)cells(P<0.05).Interestingly,the increased expression of LC3B-II induced by OTA is further amplified by UA pre-treatment(P<0.05).In conclusion,OTA triggers a harmful feedback loop between ER stress(ERS)and excessive ER-phagy,thereby further promoting ERS-and mitochondrial-mediated apoptosis in vitro.However,this effect is significantly mitigated by UA through the inhibition of autophagosome-lysosome fusion,consequently blocking the excessive ER-phagic flux.
基金financially supported by the National Natural Science Foundation of China(Nos.51874236 and 52174207)Shaanxi Science and Technology Innovation Team(No.2022TD02)Henan University of Science and Technology PhD Funded Projects(No.B2025-9)。
文摘To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.
基金Department of Defense(W81XWH-17-1-0447 and W81XWH1910548 to AKS)Texas A&M University School of Medicine。
文摘Over one-third of 700,000 military personnel who served in the first Gulf War(GW)suffer from an assortment of symptoms,including cognitive and memory problems,musculoskeletal pain,gastrointestinal discomfort,fatigue,and respiratory issues[1,2].The precise etiology of Gulf War illness(GWI)is unclear.However,epidemiological and preclinical studies imply that exposures to the prophylactic drug pyridostigmine bromide,insecticides,pesticides,smoke from oil well fires,and interaction between these exposures and war-related stress underlie this illness[2].As per the Kansas case definition,GWI is a chronic multi-symptom illness displaying one moderately severe and/or multiple symptoms of any severity in at least 3 of 6 symptom domains(fatigue,pain,neurological/cognitive/mood,skin,gastrointestinal,respiratory)[1,2].While the exact pathophysiological changes underlying GWI have not been identified,alterations in immune regulation and dysregulation of the redox balance have been observed in GWI,resulting in chronic systemic inflammation and neuroinflammation[2].
基金financial support for this work from the National Natural Science Foundation of China(Nos.42202320 and 42102266)the Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(No.LKF201901).
文摘In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations.
基金the National Institute of Mental Health at the US National Institutes of Health(grant number:R01 MH111859).
文摘Background Little is known about the association between stressors(especially positive stressors)during pregnancy and postpartum depression and anxiety.Aims We investigated the association between positive and negative stress events during different stages of pregnancy and postpartum mental health outcomes among low-income pregnant women with symptoms of anxiety in Pakistan and evaluated whether an intervention based on cognitive behavioural therapy(CBT)had a regulatory effect.Methods Participants were 621 pregnant Pakistani women with mild anxiety.Using the Pregnancy Experience Scale-Brief Version,six scores were created to assess positive and negative stressors.We performed a multivariate linear regression to examine whether these six scores,measured both at baseline and in the third trimester,were associated with postpartum anxiety and depressive symptoms.The effect of the intervention on this relationship was examined by adding an interaction term to the regression model.Results Hassles frequency measured in the third trimester was positively associated with depression(B=0.22,95%confidence interval(Cl):0.09 to 0.36)and anxiety(B=0.19,95%Cl:0.08to 0.30).At the same timepoint,uplifts intensity was negatively associated with symptoms of depression(B=-0.82,95%Cl:1.46 to-0.18)and anxiety(B=-0.70,95%Cl:-1.25 to-0.15),whereas hassles intensity was positively related to symptoms of depression(B=1.02,95%Cl:0.36 to 1.67)and anxiety(B=0.90,95%Cl:0.34 to 1.47).The intensity ratio of hassles to uplifts reported in the third trimester was positively related to both depression(B=1.40,95%Cl:0.59 to 2.20)and anxiety(B=1.26,95%Cl:0.57 to 1.96).The intervention strengthened the overall positive effects of uplfts and the negative effects of hassles.Pregnancy experiences at baseline during early pregnancy to mid-pregnancy were not associated with mental health outcomes.Conclusions Stressors in the third trimester but not earlier in pregnancy were associated with postpartum symptoms of anxiety and depression.The CBT intervention modified the association between pregnancy stressors and postpartum mental health outcomes.Programmes that promote positive experiences and reduce negative experiences,especially in late pregnancy,may mitigate postpartum mental health consequences.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
基金supported by the National Natural Science Foundation of China (Grant No.52178515)。
文摘Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金financially supported by the National Natural Science Foundation of China(Nos.52304265,52174216,and 52274145)the Natural Science Foundation of Jiangsu Province(No.BK20221121)the State Key Laboratory of Mining Disaster Prevention and Control(Shandong University of Science and Technology)and Ministry of Education(No.JMDPC202301)。
文摘Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.
基金supported by the National Science Fund for Distinguished Young Scholars(32025029)the Shanghai Education Committee Scientific Research Innovation Projects(2101070007800120)+1 种基金the Yili Health Science Foundation of Chinese Institute of Food Science and Technology(2021-Y06)the Shanghai Engineering Research Center of food microbiology program(19DZ2281100)。
文摘Probiotics could effectively eliminate excess reactive oxygen species(ROS)generated during aging or lipid metabolism disorders,but their mechanism is unclear.The major purpose of this study was to investigate the mechanism of Lactiplantibacillus plantarun AR113 alleviating oxidative stress injury in the D-galactose induced aging mice.The result showed that pretreatment with L.plantarun AR113 significantly relieving H_(2)O_(2)induced cytotoxicity in HepG2 cells by maintain cell membrane integrity and increasing antioxidant enzyme activities.In D-galactose induced aging mice,L.plantarun AR113 could significantly attenuate liver damage and inflammatory infiltration by promoting endogenous glutathione(GSH)synthesis and activating the Nrf2/Keap1 signaling pathway in mice,and increasing the expression of regulated phaseⅡdetoxification enzymes and antioxidant enzymes.Further analysis shown that gavage of L.plantarun AR113 could significantly reduce the expression of G protein-coupled receptor 78(GPR78)and C/EBP homologous protein(CHOP)proteins,and promote the restoration of endoplasmic reticulum(ER)homeostasis,thereby activating cell anti-apoptotic pathways.These results were also confirmed in H_(2)O_(2)-treated HepG2 experiments.It indicated that L.plantarun AR113 could inhibit D-galactose-induced liver injury through dual inhibition of ER stress and oxidative stress.L.plantarun AR113 have good application potential in anti-aging and alleviating metabolic disorders.
文摘Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and depressive symptoms among civilians residing in armed conflictaffected regions.Methods This meta-analysis was conducted in accordance with the Preferred Reporting Items forSystematic Reviews and Meta-Analyses.A literature search employing MEDLINE(R),Embase Classic+Embase,APA PsyclNFO,Ovid Healthstar,Journal@Ovid Full Text,Cochrane,PTSDpubs and CINAHL was conducted from inception until 19 March 2024 to identify relevant studies.Quality assessment was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies,and a Comprehensive Meta-Analysiswas usedto conduct the statistical analysis.Results The search yielded 38595 articles,of which 57 were considered eligible for inclusion.The included studies comprised data from 64596 participants.We estimated a prevalence of 23.70%(95%CI 19.50%to28.40%)forPTSD symptomsand 25.60%(95%Cl 20.70%to 31.10%)for depressive features among war-afflicted civilians.The subgroup analysis based on time since the war and the country's economic status revealed the highest prevalence for both PTSD and depressive symptoms was present during the years of war and in low/middle-incomecountries.Conclusions The results of this study provide conclusive evidence of the detrimental impacts of armed conflict on mental health outcomes.Hence,it is crucial to emphasise the significance of both physical and mental health in the aftermath of war and take appropriate humanistic measures to overcome challenges in the management of psychiatric illnesses.
基金supported by the National Natural Science Foundation of China(G32072142,31972099)。
文摘In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apoptosis and autophagy during 5 days ageing.TM-induced ER stress reduced shear force,enhanced myofibril fragmentation index(MFI),disrupted myofibril structure,increased desmin degradation,and activatedμ-calpain and caspase-12.In addition,TM-induced ER stress increased the expression of Bax,Bim,and cytochrome c,and decreased the expression of Bcl-x L.Furthermore,TM-induced ER stress improved the conversion of LC3I to LC3II,raised the expression of Beclin-1,and decreased the expression of p62,PI3K,and m TOR.The opposite results were observed after 4-PBA treatment.These results suggested that ER stress could improve chicken tenderness,promote apoptosis and autophagy during chicken postmortem ageing.
基金supported by the Science and Technology Basic Resources Investigation Program of China(2019FY100500)the Fundamental Research Funds for the Central Universities(2572023CT18)the National Science Foundation(31670344).
文摘Urbanization has resulted in a significant degra-dation of soil quality,subjecting plants to persistent abiotic stressors such as heavy metal pollution,salinization,and drought.UDP-glycosyltransferases(UGTs)participate in protein glycosylation,secondary metabolite synthesis,and detoxification of exogenous toxic substances.Iris sanguinea Donn ex Hornem exhibits a high degree of resistance to various abiotic stressors.To enhance the plant’s response to adversity,a novel glycosyltransferase belonging to the UGT78 family,encoding flavonoid 3-O-glucosyltransferase(UF3GT),was cloned from the monocot species I.san-guinea.Compared with the control group,overexpression of IsUGT78 enhanced sensitivity to cadmium stress,while showing no significant impact under NaCl and d-sorbitol treatments.Under cadmium treatment,arabidopsis exoge-nously transformed with the IsUGT78 gene possessed lower germination,fresh weight,root length,and chlorophyll con-tent and increased malondialdehyde content than the wild type arabidopsis.In addition,metabolomics in leaves led to the identification of 299 flavonoid metabolites,eight and 127 which were significantly up-and down-regulated,respec-tively,in the transgenic plants.Of note,all eight upregulated flavonoid compounds were glycosylated.Given that arabi-dopsis,which exogenously expresses the IsUGT78 gene,has reduced resistance to cadmium,IsUGT78 may lead to a reduced ability to cope with cadmium stress.
基金Project supported by the Science Fund of the Key Laboratory of Cryogenic Science and Technology(Grant Nos.CRYO20230203 and CRYO202106)the National Natural Science Foundation of China(Grant Nos.51872299 and 52071223)the National Key Research and Development Program of China(Grant No.2019YFA0704904)。
文摘Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.
基金Science and Technology Development Plan Project of Suzhou(SKJYD2021035)Science and Technology Development Plan Project of Suzhou(SKJYD2022078)The Key Project Research Fund of the Second Affiliated Hospital of Wannan Medical College(YK2023Z04)。
文摘BACKGROUND:Postpartum posttraumatic stress disorder(PTSD)can occur in women who give birth after emergency admission.The identification of risk factors for this condition is crucial for developing effective preventive measures.This retrospective study aimed to explore the incidence and risk factors for postpartum PTSD in women who give birth after emergency admission.METHODS:Medical records of women who gave birth after emergency admission were collected between March 2021 and April 2023.The patients’general conditions and perinatal clinical indicators were recorded.The puerperae were divided into PTSD group and control group based on symptom occurrence at six weeks postpartum.Multivariate logistic regression analysis was performed to identify risk factors.RESULTS:A total of 276 puerperae were included,with a PTSD incidence of 20.3% at six weeks postpartum.Multivariate logistic regression analysis identified emergency cesarean section(odds ratio[OR]=2.102;95%confidence interval[CI]:1.114-3.966,P=0.022),admission to the emergency department after midnight(12:00 AM)(OR=2.245;95%CI:1.170-4.305,P<0.001),and cervical dilation(OR=3.203;95%CI:1.670–6.141,P=0.039)as independent risk factors for postpartum PTSD.Analgesia pump use(OR=0.500;95%CI:0.259–0.966,P=0.015)was found to be a protective factor against postpartum PTSD.CONCLUSION:Emergency cesarean section,admission to the emergency department after midnight,and cervical dilation were identified as independent risk factors for postpartum PTSD,while analgesic pump use was a protective factor.These findings provide insights for developing more effective preventive measures for women who give birth after emergency admission.
基金supported by the Talent Research Fund of Hefei University(No.21-22RC09)National Natural Science Foundation of China(No.U22A20225)。
文摘In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant Nos.U2241288 and 11974359).
文摘Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.