The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proport...The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proportion of heavy molecular weight hydrocarbons, and higher proportion of C29 regular steranes, which indicate that the organic matter of source rocks might have been deposited in an oxidizing palaeoenvironment and be dominated by higher plant organic matter input. The oil from E3w2 (the second member of Weizhou Fro. of the Oligocene) has a much higher density, relatively higher Pr/nC17 and Ph/nC18 ratios, and a "UCM--unresolved complex mixture" on gas chromatograms, which indicate that it has been slightly biodegraded. CPI and other terpane and sterane isomer ratios suggest they are all mature oils. The timing of oil charging in E3w2 and E2I1 (the first member of the Liushagang Fro. of the Eocene) determined by the homogenization temperatures of fluid inclusions and thermal evolution history are from 9-3 Ma and 8-3 Ma, respectively. Thus, the interpretation of E3w2 as a secondary reservoir is unlikely. The timing of oil charging is later than that of hydrocarbon generating and expulsion of Liushagang Fin. source rocks and trap formation, which is favorable for oil accumulation in this area. All molecular parameters that are used for tracing oil filling direction decrease with shallower burial depth, which suggests vertical oil migration. The widely occurring faults that penetrate through the source rocks of the Liushagang Fro. may serve as a fine oil charging conduit.展开更多
The new recently demonstrated reserves of oil and gas in the Ordos basin are found at the top of petroliferous basins in China. Gas pools discovered in recent years in the Permian system have become the main natural g...The new recently demonstrated reserves of oil and gas in the Ordos basin are found at the top of petroliferous basins in China. Gas pools discovered in recent years in the Permian system have become the main natural gas resource in the basin. Therefore, synthetic research on fluid inclusions should be done in order to ascertain the pool-forming stage, the maturity of organic matters and the properties of Paleo-fluids. The main types of fluid inclusions in the Permian system in the basin include brine inclusions, carbon dioxide inclusions and organic inclusions. Homogenization temperatures (HT) of brine inclusions can be divided into four intervals: 66-83 ℃, 86-108 ℃, 112-138 ℃ and 142-153℃. The fluid inclusions in the interval of 112-138 ℃ are much more than that of other intervals, indicating that the second stage of hydrocarbon migration associated with the third temperature interval is the most important stage of gas pool formations. The fluid inclusion has extensive applications in the study of gas geology, not only in ascertaining the formation stage of gas pools, but also in estimating the maturity of organic matter and restoring Paleo-fluids. The result of testing the HT of brine inclusions shows that there are two stages of gas pool formations in the Permian system occurring +150 Ma and ±100 Ma. The maturity of organic matter is moderate to high, a conclusion based on the color of fluid inclusions (radiated by fluorescence). The high salinity of Paleo-fluids of the NaCI-H2O and CaCl2-H2O systems shows good preservation conditions of the Paleo-fluids. Two stages of reservoir filling, high maturity of organic matter and good preservation conditions are factors favorable for the formation and preservation of large-scale gas pools in the Permian system in the Ordos basin.展开更多
基金This research was financially supported by the Natural Science Foundation of China(Grant No.40672093)CNPC Innovation Fund(07El001)the ESS-China Hydrocarborn Geoscience Collaboration Project under Natural Resources Canada's International 0pportunities Program.We extend our thanks to South 0il Exploration and Development Company of PetroChina for samples collection.
文摘The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proportion of heavy molecular weight hydrocarbons, and higher proportion of C29 regular steranes, which indicate that the organic matter of source rocks might have been deposited in an oxidizing palaeoenvironment and be dominated by higher plant organic matter input. The oil from E3w2 (the second member of Weizhou Fro. of the Oligocene) has a much higher density, relatively higher Pr/nC17 and Ph/nC18 ratios, and a "UCM--unresolved complex mixture" on gas chromatograms, which indicate that it has been slightly biodegraded. CPI and other terpane and sterane isomer ratios suggest they are all mature oils. The timing of oil charging in E3w2 and E2I1 (the first member of the Liushagang Fro. of the Eocene) determined by the homogenization temperatures of fluid inclusions and thermal evolution history are from 9-3 Ma and 8-3 Ma, respectively. Thus, the interpretation of E3w2 as a secondary reservoir is unlikely. The timing of oil charging is later than that of hydrocarbon generating and expulsion of Liushagang Fin. source rocks and trap formation, which is favorable for oil accumulation in this area. All molecular parameters that are used for tracing oil filling direction decrease with shallower burial depth, which suggests vertical oil migration. The widely occurring faults that penetrate through the source rocks of the Liushagang Fro. may serve as a fine oil charging conduit.
基金Project 2003CB214603 supported by the Development Plan of the State Key Fundamental Research, China
文摘The new recently demonstrated reserves of oil and gas in the Ordos basin are found at the top of petroliferous basins in China. Gas pools discovered in recent years in the Permian system have become the main natural gas resource in the basin. Therefore, synthetic research on fluid inclusions should be done in order to ascertain the pool-forming stage, the maturity of organic matters and the properties of Paleo-fluids. The main types of fluid inclusions in the Permian system in the basin include brine inclusions, carbon dioxide inclusions and organic inclusions. Homogenization temperatures (HT) of brine inclusions can be divided into four intervals: 66-83 ℃, 86-108 ℃, 112-138 ℃ and 142-153℃. The fluid inclusions in the interval of 112-138 ℃ are much more than that of other intervals, indicating that the second stage of hydrocarbon migration associated with the third temperature interval is the most important stage of gas pool formations. The fluid inclusion has extensive applications in the study of gas geology, not only in ascertaining the formation stage of gas pools, but also in estimating the maturity of organic matter and restoring Paleo-fluids. The result of testing the HT of brine inclusions shows that there are two stages of gas pool formations in the Permian system occurring +150 Ma and ±100 Ma. The maturity of organic matter is moderate to high, a conclusion based on the color of fluid inclusions (radiated by fluorescence). The high salinity of Paleo-fluids of the NaCI-H2O and CaCl2-H2O systems shows good preservation conditions of the Paleo-fluids. Two stages of reservoir filling, high maturity of organic matter and good preservation conditions are factors favorable for the formation and preservation of large-scale gas pools in the Permian system in the Ordos basin.