On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressi...On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.展开更多
Global Positioning System (GPS) observations during four measurement campaigns from 1992 to 1999 are used in a study of the temporal and spatial variation characteristics of crustal deformation of active tectonic bloc...Global Positioning System (GPS) observations during four measurement campaigns from 1992 to 1999 are used in a study of the temporal and spatial variation characteristics of crustal deformation of active tectonic blocks in North China. The Euler vectors for these active blocks are determined on the basis of GPS velocities of a group relative stable points in 1992,1995,1996 and in 1996,1999 respectively. We have studied the relative motion between blocks at the boundaries and the intra block deformation field. We have also inverted the strain rate fields for these active blocks by bi cubic spline model based on the GPS velocity field. The results show that the intra block deformation rates are different from those in block boundary zones, and are also different in different periods; the deformational field is generally characterized by intra-block extension in North China.展开更多
基金Project of State Science and Technology in the Eleventh "Five-year Plan" (2006BAC01B02-02-03).
文摘On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.
文摘Global Positioning System (GPS) observations during four measurement campaigns from 1992 to 1999 are used in a study of the temporal and spatial variation characteristics of crustal deformation of active tectonic blocks in North China. The Euler vectors for these active blocks are determined on the basis of GPS velocities of a group relative stable points in 1992,1995,1996 and in 1996,1999 respectively. We have studied the relative motion between blocks at the boundaries and the intra block deformation field. We have also inverted the strain rate fields for these active blocks by bi cubic spline model based on the GPS velocity field. The results show that the intra block deformation rates are different from those in block boundary zones, and are also different in different periods; the deformational field is generally characterized by intra-block extension in North China.