利用专利文献数据识别技术领域的技术主题演化发展路径并分析其发展趋势,对于科技界、企业界进行专利技术创新具有重要的意义。首先,使用Open IE 5.1进行SAO(subject-action-object)三元组抽取,基于LDA(latent Dirichlet allocation)模...利用专利文献数据识别技术领域的技术主题演化发展路径并分析其发展趋势,对于科技界、企业界进行专利技术创新具有重要的意义。首先,使用Open IE 5.1进行SAO(subject-action-object)三元组抽取,基于LDA(latent Dirichlet allocation)模型进行主题识别,根据TRIZ技术创新思想,基于action语义词典将技术主题划分到四个维度;然后,通过计算SAO三元组之间的相似度来测度技术主题之间的语义关联构建技术主题创新演化路径,并利用可视化技术构建技术主题创新演化路径可视化图谱,利用该图谱辅助分析技术主题演化脉络及其发展趋势。最后,通过石墨烯超级电容器(集流体)领域的实证,对该领域的技术问题(problem to problem,P-P)主题、技术功能(solution to solution,S-S)主题、解决方案(problem to solution,P-S)主题和技术效果(solution to problem,S-P)主题的创新演化路径进行解读分析,验证了本研究提出方法的可行性和有效性。展开更多
该文提出了一种基于subject-action-object(SAO)的专利结构化相似度计算方法。传统的基于关键词的定量分析方法没有考虑专利自身的结构特点,忽略了对专利间内在关系的计算,该文弥补了传统的基于关键词的定量方法的不足。在SAO结构抽取...该文提出了一种基于subject-action-object(SAO)的专利结构化相似度计算方法。传统的基于关键词的定量分析方法没有考虑专利自身的结构特点,忽略了对专利间内在关系的计算,该文弥补了传统的基于关键词的定量方法的不足。在SAO结构抽取过程中,将最新的实体抽取工具OLLIE引入到专利领域,得到了比传统SAO抽取工具更好的抽取结果。和传统的SAO方法相比,对Action元组进行了大量分析,通过重复大量实验,确定了Action元组的结构特征。最后,通过实验验证,将vector space module(VSM)模型和SAO结构进行融合,得到了比仅仅通过VSM模型进行相似度计算更好的结果。展开更多
文摘利用专利文献数据识别技术领域的技术主题演化发展路径并分析其发展趋势,对于科技界、企业界进行专利技术创新具有重要的意义。首先,使用Open IE 5.1进行SAO(subject-action-object)三元组抽取,基于LDA(latent Dirichlet allocation)模型进行主题识别,根据TRIZ技术创新思想,基于action语义词典将技术主题划分到四个维度;然后,通过计算SAO三元组之间的相似度来测度技术主题之间的语义关联构建技术主题创新演化路径,并利用可视化技术构建技术主题创新演化路径可视化图谱,利用该图谱辅助分析技术主题演化脉络及其发展趋势。最后,通过石墨烯超级电容器(集流体)领域的实证,对该领域的技术问题(problem to problem,P-P)主题、技术功能(solution to solution,S-S)主题、解决方案(problem to solution,P-S)主题和技术效果(solution to problem,S-P)主题的创新演化路径进行解读分析,验证了本研究提出方法的可行性和有效性。
文摘该文提出了一种基于subject-action-object(SAO)的专利结构化相似度计算方法。传统的基于关键词的定量分析方法没有考虑专利自身的结构特点,忽略了对专利间内在关系的计算,该文弥补了传统的基于关键词的定量方法的不足。在SAO结构抽取过程中,将最新的实体抽取工具OLLIE引入到专利领域,得到了比传统SAO抽取工具更好的抽取结果。和传统的SAO方法相比,对Action元组进行了大量分析,通过重复大量实验,确定了Action元组的结构特征。最后,通过实验验证,将vector space module(VSM)模型和SAO结构进行融合,得到了比仅仅通过VSM模型进行相似度计算更好的结果。