One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object...One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.展开更多
Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality dat...Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.展开更多
Multi-function,multiband,cost-effective,miniaturized reconfigurable radio frequency(RF)components are highly demanded in modern and future wireless communication systems.This paper discusses the needs and implementati...Multi-function,multiband,cost-effective,miniaturized reconfigurable radio frequency(RF)components are highly demanded in modern and future wireless communication systems.This paper discusses the needs and implementation of multiband reconfigurable RF components with microfabrication techniques and advanced materials.RF applications of fabrication methods such as surface and bulk micromachining techniques are reviewed,especially on the development of RF microelectromechanical systems(MEMS)and other tunable components.Works on the application of ferroelectric and ferromagnetic materials are investigated,which enables RF components with continuous tunability,reduced size,and enhanced performance.Methods and strategies with nano-patterning to improve high frequency characteristics of ferromagnetic thin film(e.g.,ferromagnetic resonance frequency and losses)and their applications on the development of fully electrically tunable RF components are fully demonstrated.展开更多
According to the production index of lint cotton yield over 100kg per mu(1/15ha)and the relationship between the climate factors and the distribution of time and space for cottonboll setting in 1985—1990,we establish...According to the production index of lint cotton yield over 100kg per mu(1/15ha)and the relationship between the climate factors and the distribution of time and space for cottonboll setting in 1985—1990,we established a model of cultural techniques of cotton leaf-age-ad-justing-controlling for enhancing early maturity.By utilizing the principle of leaf-age model andthe principle of regulating nutrient distribution with DPC(Mepiquate chloride),the plants weretreated with DPC in proper time.A new type of population plant patterns was set up.It character-ized by high population density,dwarf,high boll weight,bolls near nodes,high energy and lowconsumption,short distance transport of nutrients,high yield and good quality.We put forward aset of management measures,i.e.adjusting boll setting stage,adjusting and controlling boll set-ting structure,stably applying N,increasing P,supplementing plants with K,increasing irrigationefficiency,techniques were applied and demonstrated in large areas in high yield展开更多
Objective The study aimed to compare quality of saphenous vein(SV)grafts,wound complications,and clinical outcomes between endoscopic vein harvesting(EVH)technique and open vein harvesting(OVH)technique of coronary ar...Objective The study aimed to compare quality of saphenous vein(SV)grafts,wound complications,and clinical outcomes between endoscopic vein harvesting(EVH)technique and open vein harvesting(OVH)technique of coronary artery bypass graft(CABG)surgery.Methods One hundred patients with multi-vessel coronary disease underwent elective CABG using SV grafts were prospectively recruited and randomized into two groups.展开更多
This paper investigates formal techniques of protocol based on communicating finite state machines (CFSM). Taking the protocols POLLEND (PE) and ACKNACK (AN) as the examples, the paper discusses the formal description...This paper investigates formal techniques of protocol based on communicating finite state machines (CFSM). Taking the protocols POLLEND (PE) and ACKNACK (AN) as the examples, the paper discusses the formal description, validation and conversion of protocol with the CFSM, presents a protocol validation method and a protocol conversion algorithm based on the CFSM and demonstrates the applicability of the method and the algorithm using the example protocols PE and AN.展开更多
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc...Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.展开更多
A new coastal technique, named as assembly coastal building, was introduced. The main concept of the technique was the assembling components which could be combined and locked together to form a large caisson. The ass...A new coastal technique, named as assembly coastal building, was introduced. The main concept of the technique was the assembling components which could be combined and locked together to form a large caisson. The assembly coastal building technique was used in a sea access road in Zhuanghai 4X1 well, Dagang Oilfield. The design plans and in-situ tests in the sea access road project were introduced in detail. According to the Zhuanghai project, the numerical simulation method of assembly coastal building technique was proposed. 2D numerical simulations were performed in FLAC to analyze the displacement and stability of the technique in the construction process and post-construction period. The settlement calculated is close to the in-situ results, which proves that the proposed numerical method is reasonable. Results show that the assembly coastal building technique has large safety factor under the gravity loading and wave loadings.展开更多
An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with...An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.展开更多
Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions wa...Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point.展开更多
There are a total of more than 40 reported maize viral diseases worldwide. Five of them have reportedly occurred in China. They are maize rough dwarf disease, maize dwarf mosaic disease, maize streak dwarf disease, ma...There are a total of more than 40 reported maize viral diseases worldwide. Five of them have reportedly occurred in China. They are maize rough dwarf disease, maize dwarf mosaic disease, maize streak dwarf disease, maize crimson leaf disease, maize wallaby ear disease and corn lethal necrosis disease. This paper reviewed their occurrence and distribution as well as virus identification techniques in order to provide a basis for virus identification and diagnosis in corn production.展开更多
Ribes plants,like most of other fruit trees,are characterized by their large number but small size of somatic chromosomes.In the light of these special characteristics,we have examined several factorial combinations o...Ribes plants,like most of other fruit trees,are characterized by their large number but small size of somatic chromosomes.In the light of these special characteristics,we have examined several factorial combinations of material, pretreatment,slide preparing method and stain to identify the most promising techique for studying the chromosomes and further analyzing the karyotypes and chromosome banding of Ribes plants. The resuts indicated that the combination of root tip with pretreatment of 2 m molL-1 8-hydroxyquinoline plus 0.05% colchicine or 0.3% balm for 3~5 hours at 14℃,pre-hypotonic trcarment of 0.07mol L-1 KCl for 30 min, fixation in Carnoy's fluid,hydrolysis in 5% cellulase and 5% pectinase mixture for 4~5 hours at 25℃, post-hypotonic treatment in distilled water for half an hour and staining in Giemsa could make the chromosome prepa ration superior to other treatment combinations.展开更多
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an...Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.展开更多
In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are...In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.展开更多
Copper is a strategic metal that plays an important role in many industries.In copper metallurgy,electrolytic refining is essential to obtain high-purity copper.However,during the electrolytic refining process,impurit...Copper is a strategic metal that plays an important role in many industries.In copper metallurgy,electrolytic refining is essential to obtain high-purity copper.However,during the electrolytic refining process,impurities such as arsenic are introduced into the electrolyte,which significantly affect the subsequent production and quality of copper products.This paper first discusses the sources,forms,and transformation pathways of arsenic in copper electrolyte during the electrolytic process,then reviews various arsenic removal technologies in detail,including electrowinning,adsorption,solvent extraction,ion exchange,membrane filtration,and precipitation.Particular emphasis is placed on electrowinning,which is the most widely used and mature among these arsenic removal techniques.The paper evaluates these methods based on arsenic removal efficiency,cost effectiveness,technical maturity,environmental friendliness,and operation simplicity.In addition,the paper explores future trends in copper electrolyte purification,focusing on waste reduction at source,resource utilization,intelligent digitalization,and innovations in materials and processes.This review aims to provide researchers and practitioners with a comprehensive and in-depth reference on arsenic removal methods in copper electrolytes.展开更多
为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order pr...为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)相结合的评价方法。通过地质调查研究构建基于土体工程地质性质、水文地质条件、不良地质作用、地形地貌等影响因素为主的层次分析关系模型。基于专家判别利用FAHP计算各评价因素的权重,以各评价指标层的分级临界值作为典型评价样本,利用TOPSIS法对适宜性等级进行非等分划分,基于区间值优化的TOPSIS法建立最终评价模型,通过ArcGIS的空间分析功能等确定每个评价单元适宜性等级。该方法与传统方法相比一定程度上减少了评价过程中专家评判的过多主观影响,评价过程更倾向于定量化,结果更为客观。利用该方法对无锡市区浅层地下空间开发地质适宜性进行评价,评价结果与实际工程经验相符,证明了该方法的有效性,因此该方法对地下空间开发适宜性评价工作具有一定借鉴意义。展开更多
Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical...Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.展开更多
Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surf...Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.展开更多
基金Supported by the National Natural Science Foundation of China(42474239,41204128)China National Space Administration(Pre-research project on Civil Aerospace Technologies No.D010301)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA17010303)。
文摘One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.
基金Project (2012ZX07501002-001) supported by the Ministry of Science and Technology of China
文摘Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.
基金Projects(1253929,1910853)supported by the National Natural Science Foundation of China。
文摘Multi-function,multiband,cost-effective,miniaturized reconfigurable radio frequency(RF)components are highly demanded in modern and future wireless communication systems.This paper discusses the needs and implementation of multiband reconfigurable RF components with microfabrication techniques and advanced materials.RF applications of fabrication methods such as surface and bulk micromachining techniques are reviewed,especially on the development of RF microelectromechanical systems(MEMS)and other tunable components.Works on the application of ferroelectric and ferromagnetic materials are investigated,which enables RF components with continuous tunability,reduced size,and enhanced performance.Methods and strategies with nano-patterning to improve high frequency characteristics of ferromagnetic thin film(e.g.,ferromagnetic resonance frequency and losses)and their applications on the development of fully electrically tunable RF components are fully demonstrated.
文摘According to the production index of lint cotton yield over 100kg per mu(1/15ha)and the relationship between the climate factors and the distribution of time and space for cottonboll setting in 1985—1990,we established a model of cultural techniques of cotton leaf-age-ad-justing-controlling for enhancing early maturity.By utilizing the principle of leaf-age model andthe principle of regulating nutrient distribution with DPC(Mepiquate chloride),the plants weretreated with DPC in proper time.A new type of population plant patterns was set up.It character-ized by high population density,dwarf,high boll weight,bolls near nodes,high energy and lowconsumption,short distance transport of nutrients,high yield and good quality.We put forward aset of management measures,i.e.adjusting boll setting stage,adjusting and controlling boll set-ting structure,stably applying N,increasing P,supplementing plants with K,increasing irrigationefficiency,techniques were applied and demonstrated in large areas in high yield
文摘Objective The study aimed to compare quality of saphenous vein(SV)grafts,wound complications,and clinical outcomes between endoscopic vein harvesting(EVH)technique and open vein harvesting(OVH)technique of coronary artery bypass graft(CABG)surgery.Methods One hundred patients with multi-vessel coronary disease underwent elective CABG using SV grafts were prospectively recruited and randomized into two groups.
文摘This paper investigates formal techniques of protocol based on communicating finite state machines (CFSM). Taking the protocols POLLEND (PE) and ACKNACK (AN) as the examples, the paper discusses the formal description, validation and conversion of protocol with the CFSM, presents a protocol validation method and a protocol conversion algorithm based on the CFSM and demonstrates the applicability of the method and the algorithm using the example protocols PE and AN.
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(71210001,51338008)supported by the National Natural Science Foundation of ChinaProject supported by World Capital Cities Smooth Traffic Collaborative Innovation Center and Singapore National Research Foundation Under Its Campus for Research Excellence and Technology Enterprise(CREATE)Programme
文摘Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.
基金Project (50639010) supported by the National Natural Science Foundation of China
文摘A new coastal technique, named as assembly coastal building, was introduced. The main concept of the technique was the assembling components which could be combined and locked together to form a large caisson. The assembly coastal building technique was used in a sea access road in Zhuanghai 4X1 well, Dagang Oilfield. The design plans and in-situ tests in the sea access road project were introduced in detail. According to the Zhuanghai project, the numerical simulation method of assembly coastal building technique was proposed. 2D numerical simulations were performed in FLAC to analyze the displacement and stability of the technique in the construction process and post-construction period. The settlement calculated is close to the in-situ results, which proves that the proposed numerical method is reasonable. Results show that the assembly coastal building technique has large safety factor under the gravity loading and wave loadings.
文摘An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.
基金Supported by Agricultural Poor-helping Monopoly of Graduate University of Chinese Academy of Science (40641002)
文摘Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point.
基金Supported by the Finance Department of Hebei Province(A2012120104)
文摘There are a total of more than 40 reported maize viral diseases worldwide. Five of them have reportedly occurred in China. They are maize rough dwarf disease, maize dwarf mosaic disease, maize streak dwarf disease, maize crimson leaf disease, maize wallaby ear disease and corn lethal necrosis disease. This paper reviewed their occurrence and distribution as well as virus identification techniques in order to provide a basis for virus identification and diagnosis in corn production.
文摘Ribes plants,like most of other fruit trees,are characterized by their large number but small size of somatic chromosomes.In the light of these special characteristics,we have examined several factorial combinations of material, pretreatment,slide preparing method and stain to identify the most promising techique for studying the chromosomes and further analyzing the karyotypes and chromosome banding of Ribes plants. The resuts indicated that the combination of root tip with pretreatment of 2 m molL-1 8-hydroxyquinoline plus 0.05% colchicine or 0.3% balm for 3~5 hours at 14℃,pre-hypotonic trcarment of 0.07mol L-1 KCl for 30 min, fixation in Carnoy's fluid,hydrolysis in 5% cellulase and 5% pectinase mixture for 4~5 hours at 25℃, post-hypotonic treatment in distilled water for half an hour and staining in Giemsa could make the chromosome prepa ration superior to other treatment combinations.
文摘Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.
文摘In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.
基金Project(52174385)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3904003,2023YFC3904004,2023YFC390400501)supported by the National Key R&D Program of China。
文摘Copper is a strategic metal that plays an important role in many industries.In copper metallurgy,electrolytic refining is essential to obtain high-purity copper.However,during the electrolytic refining process,impurities such as arsenic are introduced into the electrolyte,which significantly affect the subsequent production and quality of copper products.This paper first discusses the sources,forms,and transformation pathways of arsenic in copper electrolyte during the electrolytic process,then reviews various arsenic removal technologies in detail,including electrowinning,adsorption,solvent extraction,ion exchange,membrane filtration,and precipitation.Particular emphasis is placed on electrowinning,which is the most widely used and mature among these arsenic removal techniques.The paper evaluates these methods based on arsenic removal efficiency,cost effectiveness,technical maturity,environmental friendliness,and operation simplicity.In addition,the paper explores future trends in copper electrolyte purification,focusing on waste reduction at source,resource utilization,intelligent digitalization,and innovations in materials and processes.This review aims to provide researchers and practitioners with a comprehensive and in-depth reference on arsenic removal methods in copper electrolytes.
文摘为了客观评价地下空间开发地质适宜性并为评价工作提供一种新思路和参考,提出了一种基于三角模糊数的模糊层次分析法(fuzzy analytic hierarchy process based on triangular fuzzy numbers,FAHP)和优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)相结合的评价方法。通过地质调查研究构建基于土体工程地质性质、水文地质条件、不良地质作用、地形地貌等影响因素为主的层次分析关系模型。基于专家判别利用FAHP计算各评价因素的权重,以各评价指标层的分级临界值作为典型评价样本,利用TOPSIS法对适宜性等级进行非等分划分,基于区间值优化的TOPSIS法建立最终评价模型,通过ArcGIS的空间分析功能等确定每个评价单元适宜性等级。该方法与传统方法相比一定程度上减少了评价过程中专家评判的过多主观影响,评价过程更倾向于定量化,结果更为客观。利用该方法对无锡市区浅层地下空间开发地质适宜性进行评价,评价结果与实际工程经验相符,证明了该方法的有效性,因此该方法对地下空间开发适宜性评价工作具有一定借鉴意义。
文摘Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.
基金supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+2 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi Province Intelligent Optoelectronic Sensing Application Technology Innovation CenterShanxi Province Optoelectronic Information Science and Technology Laboratory,Yuncheng University。
文摘Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.