Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nu...Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.展开更多
Excessive reactive oxygen species(ROS)can cause oxidative damage and lead to various metabolic disease.Tartary buckwheat(Fagopyrum tataricum(L.)Gaertn)is a new kind of protein-rich functional food,the protein in which...Excessive reactive oxygen species(ROS)can cause oxidative damage and lead to various metabolic disease.Tartary buckwheat(Fagopyrum tataricum(L.)Gaertn)is a new kind of protein-rich functional food,the protein in which has been proved to have good antioxidant capacity.In this study,in order to further explore the antioxidant mechanism of Tartary buckwheat protein,4 peptides(CR-8,LR-8,GK-10 and SR-12)were isolated and identified from it.H2 O2 was used to induce oxidative damage to Caco-2 cells to evaluate antioxidant capacity of these peptides.The results of superoxide dismutase(SOD),total antioxidant capacity(T-AOC)and mitochondrial membrane potential etc.showed that these peptides have superior antioxidant capacity.CR-8 has the best antioxidant capacity.In order to further clarify the antioxidant mechanism of CR-8,metabolomics was used to analyze related metabolites and metabolic pathways.The results showed that after CR-8 intervention,the content of metabolites such as L-acetyl carnitine has increased.This indicated that CR-8 can improve the antioxidant capacity of damaged cells by intervening in multiple metabolic pathways.This also revealed the anti-oxidant mechanism of tartary buckwheat protein.In conclusion,it provided a theoretical basis for further studying the activity of tartary buckwheat portein and utilizing buckwheat resources.展开更多
The gut is home to a large number of intestinal microbiota that play an important role in the metabolism and immune system of the host.A growing body of evidence suggests that a high-fat diet is closely associated wit...The gut is home to a large number of intestinal microbiota that play an important role in the metabolism and immune system of the host.A growing body of evidence suggests that a high-fat diet is closely associated with many metabolic disorders,including fatty liver and type 2 diabetes.According to reports,Tartary buckwheat extract has a positive effect on intestinal microbiota in animals.The effects of Tartary buckwheat on biochemical indexes and intestinal microflora in mice were studied.Tartary buckwheat protein(FGP),Tartary buckwheat resistant starch(FGS)and Tartary buckwheat flour(FGF)alleviated organ damage in mice and lowered the atherosclerotic index(AI)in plasma.Otherwise,principal coordinate analysis(PCoA)showed that intestinal bacterial structure of FGF were separated apparently from other groups.The Firmicutes/Bacteroidetes(F/B)value of the high-fat(HF)-FGF group was significantly lower than that of the HF-FGP and HF-FGS groups.FGF significantly increases the abundance of beneficial bacteria such as Bifidobacterium,while decreasing the abundance of lipopolysaccharide(LPS)-producing bacteria.Observation of blood lipid metabolism parameters and analysis of the intestinal microbiota suggested that FGF can be more effective than FGP and FGS to reduce the effects of a high-fat diet in mice,restoring the blood parameters to values similar of those in mice fed a low-fat diet.FGF may be used to prevent or treat blood lipid metabolism disorders and intestinal microbiota disorders in mice fed a high-fat diet.展开更多
基金Supported by the Opening Project of Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsSichuan Engineering and Technology Research Center of Coarse Cereal Industralization,Chengdu University(2022CC013)。
文摘Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.
基金Shanghai Natural Science Foundation(20ZR1455800)the National Science Foundation of China(31871805)+1 种基金China Agriculture Research System(CARS-08-D2)Shanghai Municipal Education Commission(Plateau Discipline Construction Program)。
文摘Excessive reactive oxygen species(ROS)can cause oxidative damage and lead to various metabolic disease.Tartary buckwheat(Fagopyrum tataricum(L.)Gaertn)is a new kind of protein-rich functional food,the protein in which has been proved to have good antioxidant capacity.In this study,in order to further explore the antioxidant mechanism of Tartary buckwheat protein,4 peptides(CR-8,LR-8,GK-10 and SR-12)were isolated and identified from it.H2 O2 was used to induce oxidative damage to Caco-2 cells to evaluate antioxidant capacity of these peptides.The results of superoxide dismutase(SOD),total antioxidant capacity(T-AOC)and mitochondrial membrane potential etc.showed that these peptides have superior antioxidant capacity.CR-8 has the best antioxidant capacity.In order to further clarify the antioxidant mechanism of CR-8,metabolomics was used to analyze related metabolites and metabolic pathways.The results showed that after CR-8 intervention,the content of metabolites such as L-acetyl carnitine has increased.This indicated that CR-8 can improve the antioxidant capacity of damaged cells by intervening in multiple metabolic pathways.This also revealed the anti-oxidant mechanism of tartary buckwheat protein.In conclusion,it provided a theoretical basis for further studying the activity of tartary buckwheat portein and utilizing buckwheat resources.
基金Shanghai Natural Science Foundation(20ZR1455800)the National Science Foundation of China(31871805)Shanghai Municipal Education Commission(Plateau Discipline Construction Program)and China Agriculture Research System(CARS-08-D2)。
文摘The gut is home to a large number of intestinal microbiota that play an important role in the metabolism and immune system of the host.A growing body of evidence suggests that a high-fat diet is closely associated with many metabolic disorders,including fatty liver and type 2 diabetes.According to reports,Tartary buckwheat extract has a positive effect on intestinal microbiota in animals.The effects of Tartary buckwheat on biochemical indexes and intestinal microflora in mice were studied.Tartary buckwheat protein(FGP),Tartary buckwheat resistant starch(FGS)and Tartary buckwheat flour(FGF)alleviated organ damage in mice and lowered the atherosclerotic index(AI)in plasma.Otherwise,principal coordinate analysis(PCoA)showed that intestinal bacterial structure of FGF were separated apparently from other groups.The Firmicutes/Bacteroidetes(F/B)value of the high-fat(HF)-FGF group was significantly lower than that of the HF-FGP and HF-FGS groups.FGF significantly increases the abundance of beneficial bacteria such as Bifidobacterium,while decreasing the abundance of lipopolysaccharide(LPS)-producing bacteria.Observation of blood lipid metabolism parameters and analysis of the intestinal microbiota suggested that FGF can be more effective than FGP and FGS to reduce the effects of a high-fat diet in mice,restoring the blood parameters to values similar of those in mice fed a low-fat diet.FGF may be used to prevent or treat blood lipid metabolism disorders and intestinal microbiota disorders in mice fed a high-fat diet.