In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar ima...The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
At first, the radar target scattering centers model and MUSIC algorithm are analyzed in this paper. How to efficiently set the parameters of the MUSIC algorithms is given by a great deal of simulated radar data in exp...At first, the radar target scattering centers model and MUSIC algorithm are analyzed in this paper. How to efficiently set the parameters of the MUSIC algorithms is given by a great deal of simulated radar data in experiments. After that, according to measured data from two kinds of plane targets on fully polarized and high range resolution radar system, the author mainly investigated particular utilization of MUSIC algorithm in radar imaging. And two-dimensional radar images are generated for two targets measured in compact range. In the end, a conclusion is drew about the relation of radar target scattering properties and imaging results.展开更多
现有基于深度神经网络的高距离分辨(High Range Resolution,HRR)雷达目标识别方法是纯数据驱动模型,是1个飞行事故记录器结构,特征不具可解释性,在方位缺失情况下特征泛化性差,模型识别率急剧下降.对此,本文设计了一种物理可解释自编码...现有基于深度神经网络的高距离分辨(High Range Resolution,HRR)雷达目标识别方法是纯数据驱动模型,是1个飞行事故记录器结构,特征不具可解释性,在方位缺失情况下特征泛化性差,模型识别率急剧下降.对此,本文设计了一种物理可解释自编码模型(Physical Interpretable Auto-Encoder Model,PIAEM),解码网络结合雷达目标的散射点模型,利用编码网络挖掘雷达数据具有明确物理含义的散射中心特征,从成像角度描述目标的物理结构特性,如尺寸、轮廓等,在方位缺失情况下具有稳健的物理特性.设计了基于最小重构误差的分类准则,实现雷达目标识别.基于实测高距离分辨雷达回波数据的实验结果表明,本文方法提取的特征具有明确物理含义,且在方位缺失4/5的情况下,PIAEM比现有基于传统目标识别方法的准确率提升了10.27%,验证了本文方法具有方位稳健识别性能.展开更多
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.
基金supported by the National Natural Science Foundation of China(62231001).
文摘The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
文摘At first, the radar target scattering centers model and MUSIC algorithm are analyzed in this paper. How to efficiently set the parameters of the MUSIC algorithms is given by a great deal of simulated radar data in experiments. After that, according to measured data from two kinds of plane targets on fully polarized and high range resolution radar system, the author mainly investigated particular utilization of MUSIC algorithm in radar imaging. And two-dimensional radar images are generated for two targets measured in compact range. In the end, a conclusion is drew about the relation of radar target scattering properties and imaging results.